Кот ученый - Образовательный портал

Круговорот веществ и поток энергии в природе презентация к уроку по биологии (10 класс). Потоки энергии и вещества в экосистемах Круговорот веществ и поток энергии в природе

Рис. 14.5 . Сулммарный поток энергии (темные стрелки) и круговорот веществ (светлые стрелки) в экосистеме.

Таким образом, основу экосистемы составляют автотрофные организмы -продуценты (производители, созидатели), которые в процессе фотосинтеза создают богатую энергией пищу - первичное органическое вещество. В наземных экосистемах наиболее важная роль принадлежит высшим растениям, которые, образуя органические вещества, дают начало всем трофическим связям в экосистеме, служат субстратом для многих животных, грибов и микроорганизмов , активно влияют на микроклимат биотопа. В водных экосистемах главными производителями первичного органического вещества являются водоросли .

Готовые органические вещества используют для получения и накопление энергии гетеротрофы , или консументы (потребители). К гетеротрофам относятся растительноядные животные (консументы I Порядка), плотоядные, живущие за счет растительноядных форм (консументы II порядка), потребляющие других плотоядных (консументы Ш порядка) и т. д.

Особую группу консументов составляют редуценты (разрушители, или] деструкторы), разлагающие органические остатки продуцентов и консументов до простых неорганических соединений, которые зат-ем используются продуцентами. К редуцентам относятся главным образом микрорганизмы - бактерии и грибы . В наземных экосистемах особенно важное значение имеют почвенные редуценты, вовлекающие в общий круговорот органические вещества отмерших растений (они потребляют до 90% первичной продукции леса). Таким образом, каждый живой организм в составе экосистемы занимает определенную экологическую нишу (место) в сложной системе экологических взаимоотношений с другими организмами и абиотическими условиями среды.

Пищевые цепи (сети) и трофические уровни. Основой любой экосистемы, ее фундаментом являются пищевые (трофические) и сопутствующие им энергетические связи. В них постоянно происходит перенос Вещества и энергии, которые заключены в пище, созданной преимущественно растениями.

Перенос потенциальной энергии пищи, созданной растениями, через ряд организмов путем поедания одних видов другими называется цепью питания или пищевой цепью, а каждое ее звено -трофическим уровнем (рис. 14.6).

Рис. 14.6 . Цепи питания африканской саванне.

Рис. 14.7. Сети питания в экологической системе.

Существуют два основных типа пищевых цепей - пастбищные (цепи выедания, или цепи потребления) и детритные (цепи разложения). Пастбищные цепи начинаются с продуцентов: клевер ->кролик -> волк ; фитопланктон (водоросли) -> зоопланктон (простейшие) ->плотва -> щука -> скопа .

Детритные цепи начинаются от растительных и животных остатков, экскрементов животных - детрита; идут к микроорганизмам, которые ими питаются, а затем к мелким животным (детритофагам) и к их потребителям - хищникам. Детритные цепи наиболее распространены в лесах, где большая часть (более 90%) ежегодного прироста биомассы растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь разложению (сапротрофными организмами) и минерализации. Типичным примером детритной пищевой связи наших лесов является следующий: листовая подстилка -> дождевой червь -> черный дрозд-> ястреб-перепелятник. Кроме дождевых червей, детритофагами являются мокрицы , клеши, ногохвостки, нематоды и др.

Экологические пирамиды. Пищевые сети внутри каждого биогеоценоза имеют хорошо выраженную структуру. Она характеризуется количеством, размером и общей массой организмов - биомассой - на каждом уровне цепи питания. Для пастбищных пищевых цепей характерно увеличение плотности популяций, скорости размножения и продуктивности их биомасс. Снижение биомассы при переходе с одного пищевого уровня на другой обусловлено тем, что далеко не вся пища ассимилируется консументами. Так, например, у гусеницы, питающейся листьями, в кишечнике всасывается только половина растительного материала, остальное выделяется в виде экскрементов. Кроме того, большая часть питательных веществ, всасываемых кишечником, расходуется на дыхание и лишь 10-15% в конечном счете используется на построение новых клеток и тканей гусеницы. По этой причине продукция организмов каждого последующего трофического уровня всегда меньше (в среднем в 10 раз) продукции предыдущего, т. е. масса каждого последующего звена в цепи питания прогрессивно уменьшается. Эта закономерность получила название правило экологической пирамиды (рис. 14.8).

Рис, 14.8. Упрощенная экологическая пирамида.

Различают три способа составления экологических пирамид:

1. Пирамида численностей отражает численное соотношение особей разных трофических уровней экосистемы. Если организмы в пределах одного или разных трофических уровней сильно различаются между собой по размерам, то пирамида численностей дает искаженные представления об истинныхсоотношениях трофических уровней. Например, в сообществе планктона численность продуцентов в десятки и сотни раз больше численности консументов, а в лесу сотни тысяч консумен-тов могут питаться органами одного дерева - продуцента.

2. Пирамида биомасс показывает количество живого вещества, или биомассы, на каждом трофическом уровне. В большинстве наземных экосистем биомасса продуцентов, т. е. суммарная масса растений наибольшая, а биомасса организмов каждого последующего трофического уровня меньше предыдущего. Однако в некоторых сообществах биомасса консументов I порядка бывает больше биомассы продуцентов. Например, в океанах, где основными продуцентами являются одноклеточные водоросли с высокой скоростью размножения, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы. Вместе с тем, вся образованная водорослями продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества. В связи с этим в океане пирамида биомасс имеет обратное соотношение, т. е. «перевернута». На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни хищников велика, скорость оборота их генераций, наоборот, мала, и в их теле задерживается значительная часть вещества, поступающего по цепям питания.

3. Пирамида энергии отражает величину потока энергии в цепи питания. На форму этой пирамиды не влияют размеры особей, и она всегда будет иметь треугольную форму с широким основанием внизу, как это диктуется вторым законом термодинамики. Поэтому пирамида энергии дает наиболее полное и точное представление о функциональной организации сообщества, о всех обменных процессах в экосистеме. Если пирамиды чисел и биомасс отражают статику экосистемы (количество и биомассу организмов в данный момент), то пирамида энергии -динамику прохождения массы пищи через цепи питания. Таким образом, основание в пирамидах чисел и биомасс может быть больше или меньше, чем последующие трофические уровни (в зависимости от соотношения продуцентов и консументов в различных экосистемах). Пирамида энергии всегда суживается кверху. Это обусловлено тем, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы. Поэтому каждый последующий уровень всегда будет меньше предыдущего. В наземных экосистемах уменьшение количества доступной энергии обычно сопровождается снижением численности и биомассы особей на каждом трофическом уровне. Вследствие таких больших потерь энергии на построение новых тканей и дыхание организмов цепи питания не могут быть длинными; обычно они состоят из 3-5 звеньев (трофических уровней).

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение, поскольку продукция природных и искусственных сообществ (агроиенозов) является основным источником запасов пищи для человечества. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода необходимой для человека продукции.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Круговорот веществ и энергии в природе

Круговорот веществ - это повторяющиеся процессы превращения и перемещения вещества в природе, имеющие более или менее цикличный характер. Все вещества на нашей планете находятся в процессе круговорота. В природе имеется два основных круговорота Большой (геологический) Малый (биогеохимический)

Большой круговорот веществ Большой круговорот длится миллионы лет, обусловлен взаимодействием солнечной энергии с глубинной энергией Земли. Связан с геологическими процессами, образованием и разрушением горных пород и последующим перемещением продуктов разрушения.

Малый круговорот веществ Малый круговорот (биогеохимический) совершается в пределах биосферы, на уровне биоценоза. Сущность его – в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Биогеохимические циклы – Вернадский В.И.

Круговорот воды Тр сток инф Испарение воды Конденсация паров Выпадение осадков сток Транспирация инфильтрация

Транспирация - процесс движения воды через растение и её испарение через наружные органы растения, такие как листья, стебли и цветы. Вода необходима для жизнедеятельности растения, но только небольшая часть воды, поступающей через корни используется непосредственно для нужд роста и метаболизма.

Круговорот воды

Круговорот воды Основная часть воды сосредоточена в океанах. Вода, испаряясь с их поверхности, снабжает естественные и искусственные экосистемы суши. Чем ближе район к океану, тем больше там выпадает осадков. Суша постоянно возвращает воду океану: часть влаги испаряется, активнее всего в лесах, часть собирают реки: в них поступают дождевые и талые воды. Обмен влагой между океаном и сушей требует очень больших энергетических затрат: на это расходуется примерно 30% поступающей на Землю солнечной энергии.

Влияние человека на круговорот воды Круговорот воды в биосфере до развития цивилизации был равновесным, т.е. океан получал от рек столько воды, сколько расходовал ее при испарении. С развитием цивилизации этот круговорот стал нарушаться. В частности, леса испаряют все меньше воды, т.к. их площадь сокращается, а поверхность почвы, наоборот все больше, т.к. увеличивается площадь орошаемых сельхоз. угодий. Обмелели реки южных районов. Вода хуже испаряется с поверхности океана, т.к. значительная её часть покрыта пленкой нефти. Все это ухудшает водоснабжение биосферы.

Более частыми становятся засухи, возникают очаги экологических бедствий. Например, более 35 лет длится катастрофическая засуха в Африке, в зоне Сахеля – полупустынной области, отделяющей Сахару от северных стран континента. Пресная вода, которая возвращается в океан и другие водоемы с суши, часто загрязнена. Практически непригодной для питья стала вода многих рек России. Доля пресной воды, доступной живым организмам, довольно мала, поэтому её нужно расходовать экономно и не загрязнять! Каждый четвертый житель планеты испытывает недостаток в чистой питьевой воде. Во многих районах мира не хватает воды для промышленного производства и орошения.

Разные составляющие гидросферы участвуют в круговороте воды по-разному и с разной скоростью. Для полного обновления воды в составе ледников необходимо 8000 лет, подземных вод – 5000 лет, океана – 3000 лет, почвы – 1 год. Пары атмосферы и речные воды полностью обновляются за 10 – 12 суток. Круговорот воды в природе занимает около 1 млн. лет.

Круговорот кислорода Кислород входит в состав самых распространенных элементов в биосфере. Содержание кислорода в атмосфере почти 21%. Кислород входит в состав молекул воды, в состав живых организмов (белки, жиры, углеводы, нуклеиновые кислоты). Кислород производится продуцентами (зелеными растениями). Важное место в круговороте кислорода занимает озон. Озоновый слой находится на высоте 20-30 км над уровнем моря. На содержание кислорода в атмосфере влияют 2 основных процесса: 1) фотосинтез 2) разложение органического вещества, при котором он расходуется.

Круговорот кислорода – замедленный процесс. Для полного обновления всего кислорода в атмосфере требуется около 2000 лет. Для сравнения: полное обновление углекислого газа в атмосфере происходит примерно за 3 года. Кислород расходуется для дыхания большинства живых организмов. Кислород используется при сжигании горючего в ДВС, в топках ТЭС, в двигателях самолетов и ракет и т.д. Дополнительное антропогенное расходование может нарушить равновесие круговорота кислорода. Пока биосфера компенсирует вмешательство человека: потери восполняются зелеными растениями. При дальнейшем уменьшении площади лесов и сжигании всё большего количества топлива содержание кислорода в атмосфере начнет сокращаться.

ЭТО ВАЖНО!!! При снижении содержания кислорода в воздухе до 16% у человека ухудшается самочувствие (в особенности страдает сердце), до 7% - человек теряет сознание, до 3% - наступает смерть.

Круговорот углерода

Круговорот углерода Углерод – основа органических соединений, он входит в состав всех живых организмов в виде белков, жиров, углеводов. В атмосферу углерод поступает в виде углекислого газа. В атмосфере, где сконцентрирована основная масса углекислого газа, постоянно происходит обмен: растения поглощают углекислый газ при фотосинтезе, а все организмы выделяют его при дыхании. До 50% углерода в виде СО 2 возвращают в атмосферу редуценты – микроорганизмы почвы. Углерод выходит из круговорота в виде карбоната кальция.

Влияние человека на круговорот углерода Техногенная деятельность человека нарушает естественный баланс круговорота углерода: 1)при сгорании органического топлива ежегодно в атмосферу выбрасывается около 6 млрд. т СО 2: а) Производство электроэнергии на ТЭЦ б) Выхлопные газы автомобилей 2)уничтожение лесов. В течение последних 100 лет содержание углекислого газа в атмосфере неуклонно и быстро растет. Углекислый газ + метан + пары воды + озон + оксиды азота = парниковый газ. В результате – парниковый эффект – глобальное потепление, которое может привести к масштабным стихийным бедствиям.

Круговорот азота В свободной форме азот является составной частью воздуха – 78 % . Азот- один из самых важных элементов для жизнедеятельности организмов. Азот входит в состав всех белков. Молекула азота очень прочная, по этой причине большинство организмов не способно усваивать атмосферный азот. Живыми организмами азот усваивается только в форме соединений с водородом и кислородом. Фиксация азота в химические соединения происходит в результате вулканической и грозовой деятельности, но большей частью – в результате деятельности микроорганизмов – фиксаторов азота (азотфиксирующие бактерии и сине-зеленые водоросли).

Азот поступает к корням растений в форме нитратов, которые используются для синтеза органики (белков). Животные потребляют азот с растительной или животной пищей. Возврат азота в атмосферу происходит в результате разрушения отмершего органического материала. Бактерии почвы разлагают белки до неорганических веществ – газов - аммиак, оксиды азота, которые поступают в атмосферу. Попавший в водоемы азот также проходит по пищевым цепям «растение – животное – микроорганизмы» и возвращается в атмосферу.

Воздействие человека на круговорот азота Техногенная деятельность человека нарушает естественный баланс круговорота азота. При распашке земель почти в 5 раз снижается активность микроорганизмов – фиксаторов азота, поэтому снижается содержание азота в почве, что приводит к снижению плодородия почвы. Поэтому человек вносит в почву избыток нитратов, входящих в минеральные удобрения. Большое количество оксидов азота поступает в атмосферу при сжигании и переработке газа, нефти, угля и выпадает в виде кислотных дождей. Восстановление естественного круговорота азота возможно за счет уменьшения производства азотных удобрений, сокращения промышленных выбросов оксидов азота в атмосферу и прочее.

Круговорот фосфора

В отличие от круговоротов воды, углерода, азота и кислорода, которые являются закрытыми, круговорот фосфора – открытый, т.к. фосфор не образует летучих соединений, поступающих в атмосферу. Фосфор содержится в горных породах, откуда попадает в экосистемы при естественном разрушении пород или при внесении на поля фосфорных удобрений. Растения поглощают неорганические соединения фосфора, а животные питающиеся этими растениями, накапливают фосфор в своих тканях. После разложения мертвых тел животных и растений не весь фосфор вовлекается в круговорот. Часть его вымывается из почвы в водоемы (реки, озера, моря) и оседает на дно. На сушу фосфор возвращается в небольшом количестве с выловленной человеком рыбой.

Воздействие человека на круговорот фосфора Перенос фосфора с суши в океан заметно усилился под влиянием человека. При уничтожении лесов, распашке почв возрастает объем поверхностного стока воды, а кроме того в реки, озера с полей поступают внесенные фосфорные удобрения. Поскольку запасы фосфора на суше ограничены, а его возврат из океана затруднен, в будущем в земледелии возможен недостаток фосфора, что вызовет снижение урожаев (в первую очередь зерновых культур).


Министерство образования Российской Федерации
ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Кафедра экологии

РЕФЕРАТ
по дисциплине «Экология»
на тему:
«Поток энергии и круговорот веществ в природе»

Выполнил:
студент гр. ЗЭВМ-107
Бочаров А.В.

Приняла:
Мищенко Т. В.

ВЛАДИМИР 2011

Введение ……………………………………………………….….………….. 3
1. Поток энергии в биосфере …………………………………..……………. 5
2. Биогеохимические круговороты …………………………….….………... 7
2.1 Круговорот воды ………………………………………….….…… 9
2.2 Круговорот кислорода …………………………………….……... 11
2.3 Круговорот углерода ………………………….………………… 12
2.4 Круговорот азота ………………………………………….……… 14
2.5 Круговорот фосфора ……………………….…………….……….. 17
2.6 Круговорот серы ……………………………………….…………. 18
3.Факторы, влияющие на круговорот веществ в природе ………………... 19
4. Влияние человека на круговороты веществ в природе ………………… 23
Заключение ………………………………………………….……………….. 26
Список используемых источников литературы……………….…………… 27

Введение
Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.
Экосистемы - это сообщества организмов, связанные с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. В любом конкретном местообитании запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков. Таким образом, сообщество обретает с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.
Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называют экосистемой. Такой термин был предложен в 1935 году английским экологом А.Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты, и мы не можем отделить организмы от конкретной окружающей среды. А.Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, хотя они и не имеют определенного объема и могут охватывать пространство любой протяженности.
Большинство веществ земной коры проходит через живые организмы и вовлечено в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Деятельность живых организмов сопровождается извлечением из окружающей их неживой природы больших количеств минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, то есть циркуляция веществ между атмосферой, гидросферой, литосферой и живыми организмами.
Целью данного реферата является изучение циркуляции потока энергии и веществ в природе, и раскрытие выбранной темы.
Тема моего реферата очень велика. О ней можно говорить долго. Но я затрону только те вопросы, которые считаю наиболее важными и близкими к выбранной теме.

1. ПОТОК энергии в биосфере
Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (СО 2 и Н 2 О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей.
Образованные в процессе фотосинтеза органические вещества могут служить источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растения к растительноядным животным, от них – к плотоядным и т.д. Высвобождение заключенной в органических соединениях энергии происходит в процессе дыхания или брожения. Разрушение использованных или отмерших остатков биомассы осуществляют разнообразные организмы, относящиеся к числу сапрофитов (гетеротрофные бактерии, грибы, некоторые животные и растения). Они разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы и продуцирования органического вещества. Однако содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения, поэтому биосфере необходим приток энергии извне.
В отличие от веществ, которые непрерывно циркулируют по разным блокам экосистемы и всегда могут вновь входить в круговорот, энергия может быть использована только один раз.
Односторонний приток энергии как универсальное явление природы происходит в результате действия законов термодинамики, относящимся к основам физики. Первый закон утверждает, что энергия может переходить из одной формы (например, энергия света) в другую (например, потенциальную энергию пищи), но она никогда не создается вновь и не исчезает.
Второй закон термодинамики гласит, что не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части. В таких превращениях определенное количество энергии рассеивается в недоступную тепловую энергию, и, следовательно, теряется. По этой причине не может быть превращений, например пищевых веществ в вещество, из которого состоит тело организма, идущих со 100-процентной эффективностью.
Существование всех экосистем зависит от постоянного притока энергии, которая необходима всем организмам для поддержания их жизнедеятельности и самовоспроизведения.
Солнце – практически единственный источник всей энергии на Земле. Однако далеко не вся энергия солнечного излучения может усваиваться и использоваться организмами. Лишь около половины обычного солнечного потока, падающего на зеленые растения (то есть на продуценты), поглощается фотосинтетическими элементами и лишь малая доля поглощенной энергии (от 1/100 до 1/20 части) запасается в виде биохимической энергии (энергии пищи).
Таким образом, большая часть солнечной энергии теряется в виде тепла на испарение. В целом поддержание жизни требует постоянного притока энергии. И где бы ни находились живые растения и животные, мы всегда найдем здесь источник их энергии.

2. Биогеохимические круговороты
Химические элементы, входящие в состав живого, обычно циркулируют в биосфере по характерным путям: из внешней среды в организмы и опять во внешнюю среду. Для биогенной миграции свойственно накопление химических элементов в организмах (аккумуляция) и их высвобождение в результате минерализации отмершей биомассы (детрита). Такие пути циркуляции химических веществ (в большей или меньшей степени замкнутые), протекающие с использованием солнечной энергии через растительные и животные организмы, называют биогеохимическими круговоротами (био относится к живым организмам, а гео – к почве, воздуху, воде на земной поверхности).
Различают круговороты газового типа с резервуарами неорганических соединений в атмосфере или океанах (N 2 , О 2 , СО 2 ,Н 2 О) и круговороты осадочного типа с менее обширными резервуарами в земной коре (Р, Са, Fе).
Необходимые для жизни элементы и растворенные соли условно называют биогенными элементами (дающими жизнь), или питательными веществами. Среди биогенных элементов различают две группы: макротрофные вещества и микротрофные вещества.
Первые охватывают элементы, которые составляют химическую основу тканей живых организмов. Сюда относятся: углерод, водород, кислород, азот, фосфор, калий, кальций, магний, сера.
Вторые включают в себя элементы и их соединения, также необходимые для существования живых систем, но в исключительно малых количествах. Такие вещества часто называют микроэлементами. Это железо, марганец, медь, цинк, бор, натрий, молибден, хлор, ванадий и кобальт. Хотя микротрофные элементы необходимы для организмов в очень малых количествах, их недостаток может сильно ограничить продуктивность, так же как и нехватка биогенных элементов.
Циркуляция биогенных элементов сопровождается обычно их химическими превращениями. Нитратный азот, например, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В процессах денитрификации и фиксации азота принимают участие различные механизмы, как биологические, так и химические.
Углерод, содержащийся в атмосфере в виде СО 2 , является одним из исходных компонентов для фотосинтеза, а затем вместе с органическим веществом потребляется консументами. При дыхании растений и животных, а также за счет редуцентов углерод в виде СО 2 возвращается в атмосферу.
В отличие от азота и углерода резервуар фосфора находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами (образование гуано). Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.
В отличие от энергии биогенные элементы могут использоваться неоднократно: круговорот их характерная черта. Другое отличие от энергии состоит в том, что запасы биогенных элементов непостоянны. Процесс связывания некоторой их части в виде живой биомассы снижает количество, остающееся в среде экосистемы.
Рассмотрим подробнее биогеохимические круговороты некоторых веществ.

      Круговорот воды
Вода находится в постоянном движении. Испаряясь с поверхности водоемов, почвы, растений, вода накапливается в атмосфере и, рано или поздно, выпадает в виде осадков, пополняя запасы в океанах, реках, озерах и т.п. Таким образом, количество воды на Земле не изменяется, она только меняет свои формы - это и есть круговорот воды в природе. Из всех выпадающих осадков 80% попадает непосредственно в океан. Для нас же наибольший интерес представляют оставшиеся 20%, выпадающие на суше, так как большинство используемых человеком источников воды пополняется именно за счет этого вида осадков. Упрощенно говоря, у воды, выпавшей на суше, есть два пути. Либо она, собираясь в ручейки, речушки и реки, попадает в результате в озера и водохранилища - так называемые открытые (или поверхностные) источники водозабора. Либо вода, просачиваясь через почву и подпочвенные слои, пополняет запасы грунтовых вод. Поверхностные и грунтовые воды и составляют два основных источника водоснабжения. Оба этих водных ресурса взаимосвязаны и имеют как свои преимущества, так и недостатки в качестве источника питьевой воды.
В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.
Наиболее замедленной частью круговорота воды является деятельность полярных ледников, что отражают медленное движение и скорейшее таяние ледниковых масс. Наибольшей активностью обмена после атмосферной влаги отличаются речные воды, которые сменяются в среднем каждые 11 дней. Чрезвычайно быстрая возобновляемость основных источников пресных вод и опреснение вод в процессе круговорота являются отражением глобального процесса динамики вод на земном шаре.
      Круговорот кислорода
Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 10 15 m, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха.
Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды.
      Круговорот углерода
Углерод по распространенности на Земле занимает шестнадцатое место среди всех элементов и составляет приблизительно 0,027% массы земной коры. В несвязанном состоянии он встречается в виде алмазов (наибольшие месторождения в Южной Африке и Бразилии) и графита (наибольшие месторождения в ФРГ, Шри-Ланка и СССР). Каменный уголь содержит до 90% углерода. В связанном состоянии углерод входит также в разные горючие ископаемые, в карбонатные минералы, например кальцит и доломит, а также в состав всех биологических веществ. В форме диоксида углерода он входит в состав земной атмосферы, в которой на его долю приходится 0,046% массы.
Углерод имеет исключительное значение для живого вещества (живым веществом в геологии называют совокупность всех организмов, населяющих Землю). Из углерода в биосфере создаются миллионы органических соединений. Углекислота из атмосферы в процессе фотосинтеза, осуществляемого зелеными растениями, ассимилируется и превращается в разнообразные органические соединения растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения, продуцируют в год около 1,5*10 11
и т.д.................

Образование простейших минеральных и органоминеральных компонентов в газообразном жидком или твердом состоянии которые в последствии становятся составными компонентами для новых циклов круговорота веществ. Из оставшихся 66 большая часть идет на нагревание атмосферы и суши испарение и круговорот воды в экосфере преобразуется в энергию ветров. Круговорот воды гидрологический цикл В результате круговорота воды происходит ее накопление очистка и перераспределение планетарного запаса воды.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 5

Круговорот веществ и энергии

Круговорот веществ и энергии в природе складывается из нескольких взаимосвязанных процессов:

  1. Регулярно повторяющийся или непрерывный поток энергии, а также образование и синтез новых соединений.
  2. Постоянный или периодический перенос и перераспределение энергии, вынос и направленное перемещение синтезированных соединений под влиянием физических, химических и биологических агентов.
  3. Разложение и деструкция (разрушение) синтезированных ранее соединений под влиянием биогенных или абиогенных факторов среды.
  4. Образование простейших минеральных и органоминеральных компонентов в газообразном, жидком или твердом состоянии, которые в последствии становятся составными компонентами для новых циклов круговорота веществ.

Энергия Солнца

Родоначальником всех известных видов энергии, включая и ядерную, является Солнце. За трое суток Земля получает от Солнца такое количество энергии, какое могло бы освободиться при сжигании всех имеющихся природных запасов угля, газа, нефти и древесины.

Энергия Солнца излучается в космос в виде спектра ультрафиолетового, видимого (светового) и инфракрасного излучения и других форм лучистой и электромагнитной энергии.

Рис. Поток энергии к земной поверхности и от нее

Около 34% энергии Солнца сразу же отражается назад в космос облаками, пылью и другими веществами находящимися в атмосфере, а также собственно поверхностью Земли. Из оставшихся 66% большая часть идет на нагревание атмосферы и суши, испарение и круговорот воды в экосфере, преобразуется в энергию ветров. И лишь незначительная часть этой энергии (0,023%)улавливается зелеными растениями и используется в процессе фотосинтез для образование органических соединений.

Круговорот воды (гидрологический цикл)

В результате круговорота воды происходит ее накопление, очистка и перераспределение планетарного запаса воды.

Рис. Упрощенная диаграмма круговорота воды

Солнечная энергия и земное притяжение непрерывно перемещают воду между океанами, атмосферой, сущей и живыми организмами. Важнейшими процессами этого круговорота являются испарение (превращение воды в водяной пар), конденсация (превращение водяного пара в капли жидкости), осадки (дождь, изморось, град, снег) и сток воды назад в море для возобновления цикла.

Под воздействие поступающей солнечной энергии вода испаряется с поверхности океанов, рек, озер, почв и растений и поступает в атмосферу. Ветры и воздушные массы переносят водяной пар в различные районы Земли. Понижение температуры в отдельных частях атмосферы приводит к образованию массы мельчайших капелек воды в виде облаков или тумана. В конце концов капли воды сливаются вместе и становятся на столько тяжелыми, что выпадают на поверхность суши или водоема в виде атмосферных осадков.

В среднем молекула воды находится в воздухе около 10 дней, прежде чем попадает с осадками на землю. Примерно половина всех осадков на планете выпадает в зоне тропических лесов.

Часть пресной воды, выпадающей на землю, замерзает в ледниках. Однако в основном вода стекает в ближайшие озера, руки и ручьи, которые несут ее обратно в океан, тем самым замыкая кольцо круговорота.

Значительная часть воды просачивается глубоко в грунт. Там происходит накопление грунтовых вод в водоносных горизонтах. Однако циркуляция подземных вод происходит несравнимо медленнее, чем циркуляция поверхностных и атмосферных вод. Подземные источники и водотоки в итоге возвращаются на поверхность суши и в реки и озера, откуда снова испаряется или стекает в океан.

Человек вмешивается в круговорот воды двумя способами:

  • забор больших количеств пресной воды из рек, озер и водоносных горизонтов. В густозаселенных или интенсивно орошаемых районах водозабор привел к истощению запасов грунтовых вод или вторжению океанической соленой воды в подземные водоносные горизонты.
  • сведение растительного покрова суши в интересах развития сельского хозяйства, при добыче полезных ископаемых, строительстве дорог и жилья. Это приводит к уменьшению просачивания поверхностных вод под землю, что сокращает пополнение запасов грунтовых вод, увеличивается риск наводнений и повышает интенсивность стока, тем самым усиливая эрозию почв.

Биогеохимические круговороты

Любые элементы или их соединения необходимы для жизнедеятельности организмов, их роста и размножения называются питательными веществами . Они включают как органические вещества (сахар и протеины) так и неорганические (вода, углекислый газ, кислород, нитраты, фосфаты, железо, мель).

Около 40 элементов и их соединений являются наиболее важными для живых организмов. Эти элементы необходимые в больших количествах называются питательными макроэлементами . К ним относятся углерод, кислород, водород, азот, фосфор, сера, кальций, магний, калий. Они составляют 97: массы человеческого тела.

Около 30 других элементов, необходимых для жизни в небольших или незначительных количествах, называют питательными микроэлементами . Это железо, медь, цинк, хлор, йод.

Большинство элементов на Земле находятся в таком состоянии, что не могут быть напрямую использованы живыми организмами. К счастью, элементы и их соединения, необходимые в качестве питательных веществ, находятся в постоянном круговороте и способны преобразовываться в необходимые для поглощения формы.

Круговорот веществ в биосфере обусловлен совместным действие биологических, геохимических и геофизических факторов.

Биологические циклы обусловлены жизнедеятельностью организмов: питание, пищевые сети, размножение, рост, передвижение, смерть, разложение, минерализация.

Абиогенные циклы сложились намного раньше биологических; они включают в себя весь комплекс геологических, геохимических, гидрологических и атмосферных процессов.

Символом круговорота веществ является спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.

К главным циклам можно отнести круговороты углерода, кислорода, азота, фосфора, серы и биогенных катионов.

Круговорот углерода

Рис. Круговорот углерода в биосфере

Углерод является основным «строительным материалом» молекул органических соединений. Большинство наземных растений получают необходимый углерод, поглощая углекислый газ из атмосферы., концентрация которого там составляет 0,04%. Фитопланктон (микроскопические растения, плавающие в водных экосистемах) получают углерод их углекислого газ, растворенного в воде.

В процессе фотосинтеза растения – продуценты превращают углерод углекислого газа в углерод сложных органических соединений, например глюкозы:

углекислый газ + вода + солнечная энергия = глюкоза + кислород

Затем в процессе клеточного дыхания глюкоза и другие сложные органические соединения расщепляются и преобразуют углерод обратно в углекислый газ, для повторного использования продуцентами:

глюкоза + кислород = углекислый газ + вода + энергия

В круговороте углерода, а точнее наиболее подвижное его формы – углекислого газа, четко прослеживается трофическая цепь: продуценты, консументы, редуценты.

Углерод быстро циркулирует между атмосферой, гидросферой и живыми организмами. Некоторая часть планетарного углерода на длительные периоды «связывается» в форме ископаемых видов топлива – каменного и бурого угля, нефти, природного газа, торфа, сланцев – процесс образования которых в литосфере длился миллионы лет. В таком виде углерод остается «связанным» до тех пор пока не будет снова введен в атмосферу в форме углекислого газа, что происходит при добыче и сжигании минерального топлива.

Вмешательство человека в круговорот углерода резко возрастает, особенно начиная с 1950-х годов, в результате быстрого роста населения и использования ресурсов, и происходит оно в основном двумя способами:

  • Сведение лесов и другой растительности без достаточных лесовосстановительных работ, в связи с чем уменьшается общее количество растительности, способной поглощать углекислый газ.
  • Сжигание углеродсодержащих ископаемых видов топлива и древесины. Образующийся при этом углекислый газ попадает в атмосферу, постепенное возрастание содержания которого, вызывает так называемый «парниковый эффект».

Круговорот азота

Рис. Круговорот азота в биосфере

Круговорот азота охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом (N 0 3- и NH 4 ). И это при том, что запасы азота в атмосфере неисчерпаемы (78% от ее объема). Редуценты (деструкторы), а точнее почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Правда, часть его окисляется в воздухе — во время грозовых разрядов — и поступает в почву с дождевой водой, но таким способом его фиксируется в 10 раз меньше, чем с помощью бактерий.

Вмешательство человека в круговорот азота состоит в следующем:

  • при сжигании ископаемого топлива в атмосферу выбрасываются большие количества оксида азота (NO ). Оксид азота затем соединяется в атмосфере с кислородом и образуется диоксид азота (NO 2 ),который при взаимодействии с водяным паром может образовывать азотную кислоту (HNO 3 ). Эта кислота становится компонентом кислотных осадков.
  • использование удобрений приводит к выделению в атмосферу «парникового газа» закиси азота (N 2 O )
  • увеличение количества нитратов и ионов аммония в водных экосистемах при смыве с удобрений с полей. Избыток питательных веществ приводит к быстрому росту водорослей, при разложении которых расходуется растворенный кислород, что приводит к массовым морам рыб.

Круговорот фосфора

Рис. Круговорот фосфора в биосфере

Фосфор, главным образом в виде фосфат-ионов (РО 3- и НРО 4 2- ), является важным питательным элементом как для растений, так и для животных. Он входит в состав молекул ДНК, несущих генетическую информацию; молекул АТФ и АДФ, в которых запасается необходимая для организмов химическая энергия, используемая при клеточном дыхании; молекул жиров, образующих клеточные мембраны в растительных и животных клетках; а также веществ, входящих в состав костей и зубов. Общий круговорот фосфора можно разделить на две части — водную и наземную

Фосфор медленно перемещается из фосфатных месторождений на суше и мелководных океанических осадков к живым организмам и затем обратно. Фосфор, высвобождаемый при медленном разрушении (или выветривании) фосфатных руд, растворяется почвенной влагой и поглощается корнями растений.

Животные получают необходимый им фосфор, поедая растения или других растительноядных животных. Значительная часть этого фосфора в виде экскрементов животных и продуктов разложения мертвых животных и растений возвращается в почву, в реки и в конце концов на дно океана в виде нерастворимых фосфатных осадочных пород.

Часть фосфора возвращается на поверхность суши в виде гуано — обогащенной фосфором органической массы экскрементов питающихся рыбой птиц (пеликанов, олушей, бакланов и т. п.). Однако несравнимо большее количество фосфатов ежегодно смывается с поверхности суши в океан в результате природных процессов и антропогенной деятельности. Вмешательство человека в круговорот фосфора сводится в основном к двум вариантам:

  • добыча больших количеств фосфатных руд для производства минеральных удобрений и моющих средств;
  • увеличение избытка фосфат-ионов в водных экосистемах при попадании в них загрязненных стоков с животноводческих ферм, смытых с полей фосфатных удобрений, а также очищенных и неочищенных коммунально-бытовых стоков. Избыток этих элементов способствует «взрывному» росту сине-зеленых водорослей и других водных растений, что нарушает жизненное равновесие в водных экосистемах.

Другие похожие работы, которые могут вас заинтересовать.вшм>

384. 206.82 KB
Тема: Биоэнергетика Вопросы: Взаимосвязь обмена веществ и обмена энергии. Источники энергии и законы термодинамики. Взаимосвязь обмена веществ и обмена энергии. Источники энергии и законы термодинамики.
6645. Обмен веществ и энергии (метаболизм) 39.88 KB
Поступление веществ в клетку. Благодаря содержанию растворов солей сахаров и других осмотически активных веществ клетки характеризуются наличием в них определенного осмотического давления. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.
6289. ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ. РАЦИОНАЛЬНОЕ ПИТАНИЕ 14.42 KB
Понятие об обмене веществ в организме животных и человека. Основные понятия и определения физиологии обмена веществ и энергии. Понятие об обмене веществ в организме животных и человека.
3469. КРУГОВОРОТ ВОДЫ ОЧИСТКА СТОЧНЫХ ВОД 10.91 MB
Без воды жизнь существовать не может. На земле её очень много, около 70% поверхности покрыто морями и океанами, но это вода – солёная. Все основные наземные экосистемы, включая и человеческую, зависят от наличия пресной воды, содержащей менее 0,01% солей
7649. АНАЛИЗ ПОТОКОВ ЭНЕРГИИ 37.99 KB
В этом примере электропотребление измеряется стационарным либо временно установленным счётчиком в то время как количество отводимого тепла в градирне водяного охлаждения вычисляется путём измерения температур охлаждающей воды в подающем и обратном трубопроводах и пересчётом разницы температур в коэффициент энергопотока. Данное вычисление осуществляется умножением теплоёмкости воды на скорость потока который определяется либо путём измерения разницы давления в насосе либо путём использования накладного расходомера. Если температура...
15750. Преобразование энергии в клетке. 4.68 MB
Животные используют химическую энергию выделяющуюся при окислении органических веществ синтезированных растениями Рис. В биологических процессах проходящих при постоянных температурах и давлениях с незначительным изменением объема если не выделяются газы: где F - свободная энергии Гельмгольца: F =U – TS . Молекула отдавшая электрон оказывается в окисленном состоянии а принявшая электрон – в восстановленном. Соответственно процесс отдачи электрона называют окислением а принятия - восстановлением данного вещества.
18049. Фотоэлектрическое преобразование солнечной энергии 883.75 KB
Солнечная энергетика - направление нетрадиционной энергетики основанное на непосредственном использовании излучения Солнца с целью получения электрической энергии. Получение электрической энергии при помощи энергии Солнца позволяет доставить электричество в самые удаленные и труднодоступные участки планеты. Из-за поглощения при прохождении атмосферной массы Земли максимальный поток солнечного излучения...
3875. Исследование передачи электрической энергии на постоянном токе 13.69 KB
Краткое содержание работы Лабораторная работа нацелена на изучение закономерностей передачи электрической энергии на постоянном токе от источника в нагрузку например через некоторою промежуточную цепь линию. Эти закономерности являются первой ступенью изучения передачи энергии от источника в нагрузку в самом общем случае например на переменном токе при передаче энергии в нагрузку через распределенную цепь. При подготовке к работе необходимо ознакомиться с методическими указаниями рабочим заданием изучить учебную литературу и ответить...
12318. 50.83 KB
Принципиальные схемы солнечного горячего водоснабжения. Солнечных водонагревательных коллекторов систем солнечного горячего водоснабжения. Теплопроизводительность плоских солнечных водонагревательных коллекторов в одно – и двухконтурной стемах солнечного горячего водоснабжения...
17563. Совершенствование ценовой стратегии Веллнесс-центра “Формула Энергии” 455.63 KB
Описание деятельности веллнесс-центра “Формула Энергии”, её места на рынке, рассмотрена специфика ценообразования, применяемого на рынке фитнес-услуг, будет проанализирована ценовая стратегия компании. На основании вышеизложенного будут выдвинуты гипотезы, требующие проверки

Определение 1

Энергия представляет собой комплексную меру движения и взаимодействия всех видов материй.

В отличие от веществ, которые могут циркулировать на разных блоках биосферы , использоваться повторно и формировать круговороты, энергия представляет собой постоянный однонаправленный поток. В таких потоках энергия может превращаться из одной формы в другую до тех пор, пока не рассеется в космическом пространстве в виде тепла.

Всю биосферу можно расценивать в качестве единого пространственного образования способного к поглощению энергии из космического пространства и направлению её на внутреннюю работу.

Живые организмы являются основными потребителями и преобразователями энергии в биосфере. Так, например, продуценты преобразуют свободную лучистую энергию в химически связанную, которая в дальнейшем переходит от одних биосферных структур к другим. Каждый переход энергии сопровождается её превращением в тепло и рассеиванием в окружающей среде. При передаче энергии от продуцентов к консументам первого порядка эффективность переноса составляет всего 10%.

Более эффективным является перенос энергии от консументов первого к консументам второго порядка - 20%. Завершается поток энергии на редуцентах за счёт которых энергия либо окончательно рассеивается в виде тепла, либо аккумулируется в мертвой органике.

Круговороты веществ в биосфере

  • большой биологический (характерной особенностью большого круговорота веществ является его преимущественно горизонтальное направление. Осуществляется он исключительно между сушей и морем, как например, круговорот воды);
  • малый биологический (преимущественно вертикальным направлением миграции обладает биологический круговорот, осуществляемый между растениями и почвой);
  • химический (миграция веществ в химическом круговороте определяется двумя тесно связанными и взаимообусловленными процессами, противостоящими друг другу. Он представляет собой синтез зелеными растениями живого вещества из элементов неживой природы за счёт солнечной энергии и минерализации детрита, вследствие чего и выделяется энергия).

Замечание 1

Образование живого вещества и его разложение представляют собой две стороны единого процессы, называемого биологическим круговоротом химических элементов. Основной состав живой материи зависит от тех химических элементов, которые пребывают в биосфере в газообразном состоянии, вследствие чего органический мир живых организмов связан с круговоротом газов на Земле.

Биосферные геохимические процессы

Как известно, Земная кора насчитывает более $100$ химических элементов, однако только $6$ из них взаимодействуют в атмосфере : водород $(H)$, кислород $(O)$, азот $(N)$, углерод $(C)$, фосфор $(P)$ и сера $(S)$. Таким образом, в биосферных геохимических процессах принимают участие наиболее реакционноспособные элементы. Первые 4 из них образуют практически всю массу наземных растений, включающих около $99\%$ всего живого вещества на Земле.

Биосферные биохимические процессы

Биохимические циклы ежегодно приводят в движение около $500$ млрд. т вещества, исключительно движимой силой которых являются процессы фотосинтеза. Кроме $C$, $H$, $O$ и $N$ организмы используют зольные элементы - $Ca$, $K$ и т.д., а также макроэлементы - $Zn$, $Mo$ и т.д., круговорот которых на планете происходит за счёт циклического превращения веществ и изменения потоков энергии благодаря совместному действию биотической и абиотической трансформации живого вещества.

Вывод

Таким образом, круговорот веществ в биосфере осуществляют не определенные вещества, а лишь определенные элементы, принимающие участие в процессах, осуществляемых а различных слоях атмо-, гидро- и литосферы.