Кот ученый - Образовательный портал

Токарное дело и его история. Токарное дело творческая работа учащихся на тему Токарные работы по металлу начинающих

Токаря была и остаётся одной из самых востребованных. Обработка древесины и металла - сфера применения токарного ремесла. Для оптимизации труда, точности и скорости изготовления деталей существует множество станков и иного оборудования, которое постоянно совершенствуется, позволяя выполнять мастеру сложнейшие и точнейшие операции.

Специфика термина

Токарное дело прошло долгий путь развития, прежде чем обрело те формы производства, которые мы знаем сейчас. На современном этапе к нему относятся резка металлических и неметаллических материалов и сплавов, нанесение резьбы разных типов на детали, вытачивание отдельных элементов оборудования и нанесение на них различных насечек, канавок и т.д., обтачивание деревянных болванок для придания им нужной формы. Конечные продукты производства - знакомые нам болты и гайки, клапаны и переходники, заглушки и многая другая фурнитура, а также разные корпуса и прочие детали.

Токарное дело тесно связано с токарным производством. Под это понятие подходит, в принципе, любое предприятие, где установлены соответствующие станки и прочие орудия для работы с разным материалом от единичных заказов до целой серии или линии. Для того чтобы уметь выполнять нужные действия и разбираться в каждом этапе операций, необходимо хорошо знать свойства термообработок материалов, ориентироваться в чертежах и обладать многими другими знаниями. Поэтому токарное дело считается наукой сложной, самым тесным образом взаимодействующей со смежными.

История и традиции

Если вернуться в далёкое прошлое, то можно вспомнить, что наши предки пользовались посудой, которую долбили, вырезали и вытачивали из дерева, равно как и предметы домашнего обихода, мебель и даже игрушки. Делалось это сначала грубым способом и подручными средствами, а затем на приспособлениях, напоминавших токарные станки и ставших их прообразами. Так появились обточенные братины, миски, чашки. Следовательно, именно оттуда современное токарное дело берёт свои истоки. И по сей день в народных промыслах точёные детали и целые изделия находят широкое применение. Например, различные кухонные аксессуары: подставки под горячие чайники, кастрюли и сковородки, и т.д.; аксессуары дизайна интерьера: деревянные «занавесы» из отшлифованных кругляшков из древесины или палочек, сувенирные скульптуры и статуэтки. Токарные станки обрабатывают практически любую породу дерева быстро и аккуратно, со всей необходимой точностью. При этом размер изделия особой роли не играет. Обточить можно и миниатюрную нэцкэ, указав даже мельчайшие детали, и крупное изделие. Особую красоту и выразительность таким предметам прида

ёт художественная роспись.

С развитием промышленности, активным использованием в производстве железа зародилось и токарное дело по металлу, близкое технически к деревообрабатывающему. Сейчас без него не обходится ни один производственный процесс. Сложнейшие механизмы в основе своей сделаны из деталей, созданных на токарных станках. Поэтому токарь, особенно фрезеровщик, всегда востребован на предприятиях. А обучение токарному делу ведётся во всех специализированных профтехучилищах и на многих крупных заводах и фабриках.

Резюме

Профессия токаря, интересная и трудная, требует большой самодисциплины, аккуратности и постоянного самосовершенствования. Это одна из тех специальностей, на которых держатся самые сложные высокотехнологичные процессы.

К наиболее распространенным методикам изготовления деталей с заданными геометрическими параметрами относится токарная обработка металла. Суть данной методики, позволяющей также получать поверхность с требуемой шероховатостью, заключается в том, что с заготовки убирают лишний слой металла.

Принципы токарной обработки

Технология токарных работ по металлу предполагает использование специальных станков и режущего инструмента (резцы, сверла, развертки и др.), посредством которого с детали снимается слой металла требуемой величины. выполняется за счет сочетания двух движений: главного (вращение заготовки, закрепленной в патроне или планшайбе) и движения подачи, совершаемого инструментом при обработке деталей до заданных параметров их размера, формы и качества поверхности.

За счет того, что существует множество приемов совмещения этих движений, на токарном оборудовании работают с деталями различной конфигурации, а также осуществляют целый перечень других технологических операций, к которым относятся:

  • нарезание резьбы различного типа;
  • сверление отверстий, их растачивание, развертывание, зенкерование;
  • отрезание части заготовки;
  • вытачивание на поверхности изделия канавок различной конфигурации.

Благодаря такой широкой функциональности токарного оборудования на нем можно сделать очень многое. Например, с его помощью выполняют обработку таких изделий, как:

  • гайки;
  • валы различных конфигураций;
  • втулки;
  • шкивы;
  • кольца;
  • муфты;
  • зубчатые колеса.

Естественно, что токарная обработка предполагает получение готового изделия, которое соответствует определенным стандартам качества. Под качеством в данном случае подразумевается соблюдение требований к геометрическим размерам и форме деталей, а также степени шероховатости поверхностей и точности их взаимного расположения.

Для обеспечения контроля над качеством обработки на применяют измерительные инструменты: на предприятиях, выпускающих свою продукцию крупными сериями, – предельные калибры; для условий единичного и мелкосерийного производства – штангенциркули, микрометры, нутрометры и другие измерительные устройства.

Первое, что рассматривают при обучении токарному делу, – это технология обработки металлов и принцип, по которому она осуществляется. Заключается этот принцип в том, что инструмент, врезаясь своей режущей кромкой в поверхность изделия, зажимает его. Чтобы снять слой металла, соответствующий величине такого врезания, инструменту надо преодолеть силы сцепления в металле обрабатываемой детали. В результате такого взаимодействия снимаемый слой металла формируется в стружку. Выделяют следующие разновидности металлической стружки.

Слитая

Такая стружка формируется тогда, когда на высоких скоростях обрабатываются заготовки, выполненные из мягкой стали, меди, олова, свинца и их сплавов, полимерных материалов.

Элементная

Образование такой стружки происходит, когда на небольшой скорости обрабатываются заготовки из маловязких и твердых материалов.

Стружка надлома

Стружка такого вида получается при обработке заготовок из материала, отличающегося невысокой пластичностью.

Ступенчатая

Формирование такой стружки свойственно для среднескоростной обработки заготовок из стали средней твердости, деталей из алюминиевых сплавов.

Режущий инструмент токарного станка

Эффективность, которой отличается работа на токарном станке, определяется рядом параметров: глубиной и скоростью резания, величиной продольной подачи. Чтобы обработка детали была высококачественной, необходимо организовать следующие условия:

  • высокую скорость вращения заготовки, фиксируемой в патроне или планшайбе;
  • устойчивость инструмента и достаточную степень его воздействия на деталь;
  • максимально возможный слой металла, убираемый за проход инструмента;
  • высокую устойчивость всех узлов станка и поддержание их в рабочем состоянии.

Скорость резки выбирается на основе характеристик материала, из которого сделана заготовка, типа и качества применяемого резца. В соответствии с выбранной скоростью резки выбирается частота вращения шпинделя станка, оснащенного токарным патроном или планшайбой.

При помощи различных типов резцов можно выполнять черновые или чистовые виды токарных работ, а на выбор инструмента основное влияние оказывает характер обработки. Изменяя геометрические параметры режущей части инструмента, можно регулировать величину снимаемого слоя металла. Выделяют правые резцы, которые в процессе обработки детали передвигаются от задней бабки к передней, и левые, движущиеся, соответственно, в обратном направлении.

По форме и расположению лезвия резцы классифицируются следующим образом:

  • инструменты с оттянутой рабочей частью, ширина которой меньше ширины их крепежной части;
  • прямые;
  • отогнутые.

Различаются резцы и по цели применения:

  • подрезные (обработка поверхностей, перпендикулярных оси вращения);
  • проходные (точение плоских торцовых поверхностей);
  • канавочные (формирование канавок);
  • фасонные (получение детали с определенным профилем);
  • расточные (расточка отверстий в заготовке);
  • резьбовые (нарезание резьбы любых видов);
  • отрезные (отрезание детали заданной длины).

Качество, точность и производительность обработки, выполняемой на токарном станке, зависят не только от правильного выбора инструмента, но и от его геометрических параметров. Именно поэтому на уроках в специальных учебных заведениях, где обучаются будущие специалисты токарного дела, очень большое внимание уделяется именно вопросам геометрии режущего инструмента.

Основными геометрическими параметрами любого резца являются углы между его режущими кромками и направлением, в котором осуществляется подача. Такие углы режущего инструмента называют углами в плане. Среди них различают:

  • главный угол – φ, измеряемый между главной режущей кромкой инструмента и направлением подачи;
  • вспомогательный – φ1, расположенный, соответственно, между вспомогательной кромкой и направлением подачи;
  • угол при вершине резца – ε.

Угол при вершине зависит только от того, как заточен инструмент, а вспомогательные углы можно регулировать еще и его установкой. При увеличении главного угла уменьшается угол при вершине, при этом уменьшается и часть режущей кромки, участвующей в обработке, соответственно, стойкость инструмента тоже становится меньше. Чем меньше значение этого угла, тем большая часть режущей кромки участвует как в обработке, так и в отводе тепла от зоны резания. Такие резцы являются более стойкими.

Практика показывает, что для токарной обработки не слишком жестких заготовок небольшого диаметра оптимальным является главный угол, величина которого находится в интервале 60–90 градусов. Если обрабатывать необходимо заготовку большого диаметра, то главный угол необходимо выбирать в интервале 30–45 градусов. От величины вспомогательного угла зависит прочность вершины резца, поэтому его не делают большим (как правило, он выбирается из интервала 10–30 градусов).

Особое внимание на уроках по токарному делу уделяется и тому, как правильно выбирать тип резца в зависимости от вида обработки. Так, существуют определенные правила, по которым обработку поверхностей того или иного типа выполняют с помощью резца определенной категории.

  • Обычные прямые и отогнутые резцы необходимы для обработки наружных поверхностей детали.
  • Упорный проходной инструмент потребуется для торцевой и цилиндрической поверхностей.
  • выбирают для протачивания канавок и обрезки заготовки.
  • Расточные резцы применяются для обработки отверстий, просверленных ранее.

Отдельную категорию токарного инструмента составляют резцы, с помощью которых можно обрабатывать фасонные поверхности с длиной образующей линии до 40 мм. Такие резцы подразделяются на несколько основных типов:

  • по конструктивным особенностям: стержневые, круглые и призматические;
  • по направлению, в котором осуществляется обработка изделия: радиальные и тангенциальные.

Виды оборудования для токарной обработки

Из всех типов оборудования для токарной обработки наибольшее распространение и на крупных, и на мелких предприятиях получил токарно-винторезный станок. Причиной такой популярности является многофункциональность этого устройства, благодаря которой его с полным основанием можно назвать универсальным.

Перечислим основные элементы конструкции такого станка:

  • две бабки – передняя и задняя (в передней бабке размещают коробку скоростей станка; шпиндель с токарным патроном (или планшайбой), на задней бабке размещены продольные салазки и пиноль оборудования);
  • суппорт, в конструкции которого различают верхние и нижние салазки, поворотную плиту и резцедержатель;
  • несущий элемент оборудования – станина, установленная на две тумбы, в которых размещают электродвигатели.
  • коробка подач.

Токарный станок с ЧПУ

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Предварительный просмотр:

Токарное дело

Введение

Профессия токарь - самая распространенная в машиностроении. Токарная обработка - разновидность изготовления деталей резанием, осуществляемом на токарных станках при взаимодействии вращающейся заготовки и поступательно движущегося режущего инструмента. Поэтому продуктом труда токаря являются детали, имеющие форму тел вращения: цилиндры, конусы, детали сложной фасонной поверхности, детали с отверстиями, канавками, внутренней и наружной резьбой. Детали могут быть малых размеров - от нескольких миллиметров до огромных, многотонных.

Токарные станки приспосабливают для различных деталей и операций. Соответственно в профессии токаря выделяют группы специальностей: токарь-расточник , токарь-карусельщик , токарь-револьверщик , токарь-затыловщик , токарь-оператор , токарь-автоматчик и др. Токарь-универсал работает на универсальном токарно-винторезном станке, позволяющем выполнять все виды токарных обработок. Обычно это самый опытный работник, выполняющий уникальные изделия. Помимо станка токарь использует различные инструменты: режущие - резцы, плашки, метчики, сверла, контрольно-измерительные - штангенциркули, микрометры, калибры и др.; приспособления для крепления резца и заготовки.

«Эволюция» профессии

Токарные станки были изобретены и применялись еще в глубокой древности. Они были очень просты по устройству, весьма не совершенны в работе и имели вначале ручной, а впоследствии ножной привод. Станок представлял собой два установленных центра, между которыми зажималась заготовка из дерева, кости или рога. Раб или подмастерье вращал заготовку один или несколько оборотов в одну сторону, затем в другую. Мастер держал резец в руках и, прижимая его в нужном месте к заготовке, снимал стружку, придавая заготовке требуемую форму. Эти токарные станки применялись главным образом для обработки деревянных изделий. Необходимость обработки ускорила развитие токарных станков, хотя это развитие происходило очень медленно. Приоритет в развитии токарных станков принадлежит русским техникам.

Андрей Константинович Нартов родился в Москве 28 марта 1693 г. Он был одним из самородков-изобретателей, замеченных и выведенных на широкую дорогу Петром I. За свою не слишком долгую жизнь он изобрел и построил более тридцати станков самого разного профиля, равных которым не было в мире. В XVII веке появились токарные станки, в которых обрабатываемое изделие приводилось в движение уже не мускульной силой токаря, а с помощью водяного колеса, но резец, как и раньше, держал в руке токарь. Вначале XVIII в. токарные станки все чаще использовали для резания металлов, а не дерева, и поэтому проблема жесткого крепления резца и перемещения его вдоль обрабатываемой поверхности стола весьма актуальной. И вот впервые проблема самоходного суппорта была успешно решена в копировальном станке А.К. Нартова в 1712 г. К концу XIX века был изготовлен токарный станок с электроприводом, который был взят за основу современного оборудования.…

Профессия в наши дни

Сегодня современные автоматизированные токарные станки облегчают труд токаря. Токарь начинает работу с получения задания, чтения чертежа, расчетов. Он подбирает инструмент, устанавливает заготовку на станке, настраивает станок на выбранный режим резания и проводит обработку. Готовую деталь проверяет по размерам и чистоте поверхности. Станок имеет ручной и автоматический режим. В первом случае от токаря требуются точно координированные движения рук при управлении режущим инструментом . Эта профессия требует максимального к себе внимания, огромных сил, а также забирает очень много времени . Токарь выполняет на токарном станке операции по обработке и расточке разнообразных поверхностей, торцевых плоскостей, а также нарезание резьбы, сверление, зенкирование, калибровку, используя в качестве заготовок металл и другие материалы. Определяет или уточняет скорость и глубину резания, выбирает режущий инструмент с учетом свойств материала и конфигурации резца, закрепляет (выставляет) его, регулирует процесс обработки. Обеспечивает соответствие детали размерам, указанным в чертеже, заданную чистоту и точность.

Без металлообрабатывающего оборудования невозможно представить современную промышленность. Токарные станки используются для проведения различных токарных работ: обработка и обтачивание поверхностей деталей, нарезка зубьев, шлифование и сверление отверстий. Они разрабатывают и выпускают большой ассортимент универсальных токарных станков различных конфигураций, что позволяет удовлетворить любые потребности в области изготовления и обработки деталей. Предлагаемое ими металлообрабатывающее и металлорежущее оборудование отвечает всем современным требованиям безопасности, сохраняют простоту управления и отличаются передовыми решениями в конструкции и компоновке.

Токарно-винторезные станки – уникальный класс металлорежущего оборудования; они используются для токарных и винторезных работ по черным и цветным металлам. Токарно-винторезные станки применяют при нарезке шпинделей, гильз, осей и других деталей. Металлорежущее оборудование такого типа идеально подходит для мелкосерийного и единичного производства. Токарно-винторезные станки от «СВСЗ» просты в обращении, высокоэффективны и не производят много шума.

Ни одно современное предприятие металлообработки не обойдется без универсальных токарных станков с ЧПУ. Токарные станки с ЧПУ – компьютеризированная система металлорежущих станков, которая может полностью управлять процессом изготовления деталей. Данный класс металлообрабатывающих станков исключает возможности совершения ошибок и минимизирует человеческие усилия в процессе работы. Токарные станки с ЧПУ могут работать в автоматическом и полуавтоматическом цикле при токарной обработке деталей.

Для мелкосерийного производства промышленных предприятий и в индивидуальных мастерских чаще всего используются токарно-винторезные станки SAMAT. Универсальные токарные станки SAMAT имеют высокий класс точности по ГОСТ 8-77, могут выполнять всевозможные виды токарных работ, включая возможность нарезания различного вида резьбы. Новинка серии токарно-винторезных станков – SAMAT 400 S/S – выполняет особо точные технологические операции с применением традиционного, а также износостойкого композитного режущего инструмента.

Универсальный токарный станок «Вектор 400SC» с адаптивной системой управления не требует специальных навыков в программировании, прост в обращении и дает возможность работать с микроциклами в широком диапазоне без механических настроек.

В отличие от обычных токарных станков, токарные обрабатывающие центры многофункциональны и используются крупными предприятиями для массового производства деталей. Это высокотехнологичное металлообрабатывающее оборудование предназначено для динамичной высокопроизводительной обработки сложных деталей из конструкционных материалов. Токарный обрабатывающий центр высокой точности используют для смены позиционирования режущего инструмента на универсальных токарных станках с ЧПУ. Токарный обрабатывающий центр от ЗАО «СВСЗ» отличается высокоскоростной резкой, точностью и надежностью.

Двадцать первый век – век высоких технологий. С созданием искусственного интеллекта, токарные станки вышли на новый уровень развития, благодаря внедрению в станок программного обеспечения, повысилось качество продукции, производительность.


Токарный станок и токарное дело*

Приспособление для выделки тел вращения из дерева и других твердых материалов, называемое "токарным станком" (un tour, turning lathe, Drehbank), известно с древнейших времен; только "гончарный круг", служащий для выделки круглых глиняных сосудов, древнее его. Точеные изделия находятся во множестве между египетскими древностями, а станки первобытного устройства еще и в наше время употребляются у разных народов. Станки эти двух типов: азиаты, привыкшие сидеть на корточках, устраивают и Т. станки, соответствующие этому обычаю, а европейцы приспособили их так, чтобы работать стоя. На табл. фиг. 1 представлены индусы , обтачивающие столбик: помощник приводит обрабатываемый предмет в попеременное вращательное движение помощью веревки, как веретено для добывания огня трением. Сам станок состоит из двух вбитых в землю колышков и привязанной к ним горизонтальной палки, служащей подручником, а обтачиваемый предмет вращается на остриях двух гвоздей. Подобное же приспособление употребляют и калмыки , но для вытачивания чашек у них существует и более сложный станок (табл. фиг. 2). Между укрепленными в земле кольями вращается деревянное подобие настоящего "шпинделя" с шейкою и выдающимся за нею утолщением, служащим "патроном" для прикрепления обрабатываемого куска. Чтобы обходиться без помощника при обработке небольших предметов, веревку натягивают на "смычок": тогда мастер одною рукою приводит работу во вращение, а другою должен держать инструмент. Такие смычковые станки распространены у персиян, арабов и др. В Европе предпочли сообщать вращательное движение ногою: на табл. фиг. 3 изображен такой станок в том виде, как его и теперь употребляют для выделки деревянных вещей в Италии , Швейцарии и др. местах. Вместо вбитых в землю кольев устроена целая станина с двумя горизонтальными параллельными брусьями, между которыми передвигаются и закрепляются клиньями обе "бабки" с остриями для обтачиваемого предмета. Вместо смычка к потолку прикрепляют упругий шест, а нижний конец веревки привязывают к "подножке". Переставная доска, параллельная оси станка, служит опорой для работника. На таких станках делают даже весьма чистую и тонкую работу; для шлифовки же дерева и для некоторых других случаев попеременное движение даже целесообразнее непрерывного. Смычок и попеременное вращение употребляются и часовщиками в их маленьких токарных станочках (см. Часы), но теперь его почти повсеместно заменяют вращением непрерывным, через посредство "махового колеса". Хотя есть указание, что маховое колесо (см.) употреблялось для приведения в движение Т. станка уже в XVI стол., но во всеобщее употребление оно начало входить лишь с XVIII ст. Маховое колесо стали помещать под станком, в движение его приводили при посредстве известного механизма, состоящего из качающейся подножки, "крючка", служащего шатуном, и выгнутого вала (табл. фиг. 4). Самый станок устраивался сначала наподобие предыдущего, и бесконечную веревку с окружности махового колеса накладывали прямо на обрабатываемый кусок. Но скоро стали делать особый "шпиндель" с двумя шейками, вращающимися в особых "бабках", в отверстиях, залитых оловом, чтобы уменьшить трение и истирание. Свободный конец шпинделя снабжали винтовой нарезкою, чтобы навинчивать на него разного рода "патроны" для закрепления обрабатываемого предмета. Иногда левую бабку снабжали неподвижным острием, на цилиндрическом стержне которого свободно вращался небольшой шкив для шнурка от маховика. В таком случае обрабатываемый предмет закреплялся "между центрами", как на фиг. 3, а особый штифт , выдающийся со стороны малого шкива, зацеплял за левый конец и сообщал работе вращение. Такой прием называется обтачиванием на "мёртвых центрах"; им пользуются и в современных станках, когда необходима возможно большая точность работы. На фиг. 4-й изображено устройство еще более сложное, так назыв. "патронный" винторезный станок . Шейки шпинделя сделаны значительно длиннее охватывающих их подшипников, так что он может при вращении двигаться и вдоль своей оси. На левом конце шпинделя нарезано несколько коротких винтов разного хода, а в бабке укреплены дощечки твердого дерева с соответственными гаечными нарезками. Когда дощечки эти опущены в соответственные прорезы бабки, а крайняя, не снабженная нарезками, поднята и вставлена в соответствующий кольцевой надрез шпинделя, он не имеет продольного движения и служит для обыкновенной точки. Когда же дощечка эта заменена другою, шпиндель может сделать несколько оборотов по винтовой линии, и помощью неподвижной "гребенки" на обрабатываемом предмете можно выточить соответственного хода винт, внешний или внутренний. В начале XIX ст., когда начали строить во множестве паровые машины, от Т. станка стали требовать точной и быстрой работы; вышеописанные типы пришлось заменить более совершенными и прочными. В этом отношении первыми деятелями были английский механик Маудсли (Maudsley, -) и немецкий механик Рейхенбах ( -). Рейхенбах, занимаясь конструкцией астрономических и геодезических инструментов, имел дело с небольшими предметами и поэтому лишь усовершенствовал конструкцию деревянного Т. станка типа фиг. 4, но первый прибавил к нему "суппорт" для режущего инструмента, позволяющий передвигать его винтами вдоль оси обтачиваемого предмета и по перпендикулярному к ней направлению. Маудсли стал делать Т. станки чугунные, с суппортом; Клеман, изобретатель строгательной машины, усовершенствовал конструкцию шпинделя, стал вводить строганые чугунные станины для станка и придал ему в общих чертах современный вид, который выработался, однако, лишь в шестидесятых годах XIX ст., трудами очень многих лиц. Современные Т. станки делаются чугунные: станина w (табл. черт. 5) отливается из одного куска и свинчивается с ногами s. Станина тщательно острогана на своей верхней поверхности, представляющей две плоские, параллельные линейки или плоскую линейку спереди и параллельную ей, заостренную, сзади, так что по ним можно передвигать параллельно самим себе и закреплять левую бабку D со шпинделем x , ручной суппорт Am , подручник Bn и правую бабку Сu . В станках, приводимых в движение ногою работника, под станиною укреплен вал с кривошипом h , обыкновенно вращающийся между двух заостренных винтов, укрепленных в ногах S ; на этом валу надет ступенчатый маховик l , передающий через посредство ремня I движение шкиву l 1 , надетому на шпиндель х. Подножка t через посредство крючка u , служащего шатуном, принимает качательное движение ноги токаря и превращает его известным образом в круговое. Шпиндель составляет главную часть Т. станка, его делают из хорошей стали, а шейки закаливают и потом тщательно шлифуют. На изображенном (ф. 5) станке средней величины шпиндель с двумя конусами, вращающимися в стальных закаленных кольцах, вставленных в чугунную бабку. Оба конуса имеют вершины влево, но разный угол наклона; с левого конца на шпиндель надевается цилиндрическая трубка и придерживается гайкой. Когда шпиндель с одним конусом, он делается толще винта, нарезанного на конце х , так что шпиндель можно вставить слева, когда в части k упорный винт D достаточно отвинчен. Для работы винт этот надо тщательно подвинтить, чтобы его плоский, закаленный и отполированный конец точно соприкасался со слегка выпуклым и тоже закаленным концом двухконусного шпинделя или аккуратно входил в коническое углубление на левом конце одноконусного (фиг. 5). Для смазки кольца просверлены сверху. Верхняя часть правой бабки просверлена по геометрической оси вращения шпинделя, так что в ней двигается, не вращаясь, при помощи винта у и гайки с маховичком z цилиндр со вставным "центром" у . Подручник для опоры ручных инструментов состоит из Т-образной вставки B , которую можно поднимать и поворачивать около вертикальной оси, и ее подставки i , снабженной горизонтальным прорезом, позволяющим выдвигать ее вперед и закреплять поворотом гайки n . Устройство суппорта А лучше видно на следующих чертежах (табл. черт. 8 и 9), представляющих его вертикальные разрезы вдоль оси вращения шпинделя и перпендикулярно к ней. Фундамент A , передвигающийся по станине Т. станка, представляет прочную раму, отстроганную в форме призмы , которую охватывает нижняя "каретка" В , снабженная подвижным клином v , тщательно устанавливаемым винтами, чтобы она двигалась винтом b и гайкою m без бокового шатания. На верхней поверхности этой каретки поворачивается продольная рамка - призма CD около шипа с и укрепляется под назначенным углом винтами Χ . Ее охватывает верхняя каретка E , приводимая в движение винтом l и гайкою n ; на ее верхней поверхности укрепляется резец 1, 2 при помощи болта YY , гайки его О , треугольника gg и опорного винта Р . Когда приходится обрабатывать лишь боковую поверхность длинных предметов, их снабжают небольшими воронкообразными углублениями на концах и устанавливают между "центрами" станка. Чтобы заставить предмет этот вращаться вместе со шпинделем, надевают на левый конец "хомутик" (табл. фиг. 13), прижимают его винтом и выдвигают сколько нужно крючок навинченного на шпиндель патрона, чтобы он захватывал хвост хомутика. Если нужно обработать также один из концов, высверлить в нем дырку или нарезать винт или гайку, то предмет этот завинчивают другим концом в винтовой патрон (табл., фиг. 6). Это подобие цилиндрическ. стакана, снабженного двумя рядами накрест расположенных винтов d и d 1 ; подвинчивая систематически эти винты, нетрудно "центрировать" предмет. Такой патрон употребляется преимущественно для вытачивания предметов из толстой латунной проволоки и из цилиндрических стальных и железных прутьев. Для дерева делают такого же вида патроны без винтов, но разного диаметра, из металла или твердого дерева; обрабатываемый кусок дерева просто заколачивают округленным концом в такой патрон. Удобнее, но держит менее крепко самоцентрирующий американский патрон (таблица, фиг. 7). Он снабжен тремя плашками 1, 2, 3, двигающимися в радиальных прорезах крышки патрона E , свинченной с кольцом Оm ; на самой же плоской поверхности этого патрона нарезана архимедова спираль , захватывающая зубцы на нижней стороне плашек. По свойству этой линии внутренние ребра плашек, пригнанные в одном положении, будут оставаться на одной и той же окружности концентрической с осью вращения и во всех других положениях, в которые их можно привести, вращая крышку относительно патрона со спиралью. Кроме описанных, для разных целей устроено было еще большое число разнообразных патронов. Современный Т. станок весьма удобен и для сверления: когда предмет укреплен в патроне, можно просверлить его вдоль оси вращения: наметив предварительно центр, т. е. выточив от руки углубление в этом месте, вставляют в него острие сверла, вращают шпиндель и нажимают на сверло винтом правой бабки, задерживая при этом вращение самого сверла. Или же вставляют сверло в соответственный патрон, а на предмет нажимают винтом правой бабки, надев на правое острие особый патрон в виде кружка, нормального к оси вращения. Т. станок служит и для нарезывания винтов. Для оправ оптических стекол и вообще для соединения частей, приготовляемых из трубок, изделий из кости и твердого дерева приходится нарезать короткие винты и гайки разного диаметра и разной длины хода. Левая бабка такого патронного станка изображена на таблице, фиг. 10. Шпиндель ее с двумя цилиндрическими шейками, на заднем, левом конце его оставлен цилиндрический придаток, на который надеваются цилиндрические патроны с различною резьбою и закрепляются гайкою. Соответствующие гаечные нарезки сделаны на бронзовой звездообразной части, поворачивающейся на нижней части салазок, скользящих вниз и вверх по задней поверхности бабки при посредстве эксцентрика с рычагом. Когда надо нарезать винт, придвигают к патрону соответственную нарезку звезды, когда же надо просто точить, звезду опускают, а конец шпинделя опирают на винт в особой вилке, изображенный на фиг. 10 в приподнятом виде. На наружном винте шпинделя изображен надетым патрон со штифтом, служащий для захватывания хомутика, когда точат "на центрах"; сбоку, сзади шкива видна полоса, служащая для пользования круговыми делениями, нанесенными на передней его поверхности. Деления эти отмечены небольшими дырочками, в которые входит острие, укрепленное сбоку означенной полоски; они служат для нанесения делений на окружность обрабатываемого предмета (конечно, при снятом ремне). Для изготовления длинных и толстых винтов, особенно с прямоугольною нарезкою, служат "винторезные" Т. станки с маточным винтом, служащие также "самоточкою" для обтачивания цилиндров, плоскостей и конусов. Такой станок изображен на таблице фиг. 11. Он состоит из тех же частей, но несколько иной конструкции, станина его снабжена вырезом, так назыв. "гапом", чтобы можно было обтачивать колеса радиуса большего, чем высота его центров. Вдоль ее передней стороны идет длинный "маточный винт", сцепляемый со шпинделем системою переменных зубчатых колес, запас которых изображен под станком (слева лежит "универсальный" патрон с четырьмя переставными винтами, а справа шкив для передачи движения шпинделю от привода). Посредством разъединяемой гайки винт этот может двигать нижнюю каретку суппорта вдоль самой станины, по этой каретке скользит другая, поперечная, винт которой тоже может вращаться от шпинделя: в таком случае гайку его разъединяют и сообщают его с улиткою, сидящею на оси зубчатого колеса, передающего вращение поперечному винту каретки через посредство другого, видимого на фигуре. Чтобы не истирать напрасно винт, для установок передвигают каретку через посредство зубчатой полосы, шестерни и рукоятки, видных на фигуре. На поперечной каретке укрепляется ручной суппорт для удобной установки резца. Правее каретки виден "люнет": неподвижная подставка, в которую вкладывают деревяшки с вырезом для поддержания длинных предметов, чтобы они не гнулись при обтачивании. Левая бабка "с перебором": когда следует вращать шпиндель быстрее, ремень накидывают на шкив, а шкив скрепляют со шпинделем. Когда же необходимо вращение медленное, расцепляют шкив от шпинделя и придвигают к шестерне на его левом конце зубчатое колесо, укрепленное на особой оси, вращающейся в подшипниках, приготовленных на задней стороне бабки. Шестерня на правом конце этой оси сцепляется при этом с колесом на правом конце шпинделя и сообщает ему вращение в несколько раз более медленное. Чтобы нарезать винт данного хода, надо знать ход маточного винта. Положим, что он равен 1 см. Если винт будет вращаться с тою же скоростью, как и шпиндель, нарезываться станет его копия; чтобы получить винт в n раз меньшего хода, надо надеть такие колеса, чтобы он поворотился на один оборот при n оборотах шпинделя. Нетрудно вычислить, со сколькими зубцами надо взять для этого колеса, но на практике надо пользоваться имеющимся набором колес; так как набор этот ограничен, то иногда приходится довольствоваться приближением. Обыкновенно при станке прилагается таблица возможных и употребительных комбинаций. Если диаметры колес на шпинделе и на винте недостаточны для непосредственного сцепления, вводят вспомогательное колесо, сцепляющееся с ними обоими и не изменяющее поэтому передаваемого отношения числа оборотов. Введя еще второе такое колесо, переменим направление вращения винта и вместо правого винта станем нарезывать левый, или наоборот. Когда надо просто обточить цилиндр самоточкою, выбирают колеса как для винта с малым ходом. Иногда для упрощения конструкции в таких не винторезных самоточках вместо маточного винта устраивают зубчатую полосу с шестерней, получающей движение от шпинделя.

ТОКАРНОЕ ДЕЛО.

Мягкое дерево требует быстрого вращения, около 10 оборотов в секунду для нетолстых предметов; инструментами служат главным образом полукруглая и плоская стамески ("рера" и "мензель"). Обе отличаются от столярных большею длиною, отсутствием "гайки" на хвосте, вставляемом в рукоятку, и тем, что полукруглая оттачивается не прямо, как столярная, а углы ее стачивают больше середины; плоская затачивается с обеих сторон так, что лезвие наклонно к длине и один угол острый, а другой тупой. При работе инструмент опирают на "подручник" и прикладывают к обрабатываемой поверхности так, чтобы нижняя фаска лезвия была почти касательна к ней. Если слегка приподнимать рукоятку так, чтобы между этой фаской и касательной образовался угол в несколько градусов, стружки сначала становятся толще, а затем инструмент начинает скоблить: вместо стружек получаются крошки , а поверхность остается негладкою. Для получения гладкой поверхности приходится всегда резать "по слоям" дерева, а не против них, как и при строгании ножом; после обточки шлифуют "шкуркою" (см. Наждак) и потом крепко вытирают стружками того же дерева, отчего получается легкий блеск на поверхности. Режущий угол для мягкого дерева - между 20 и 30°; для твердых сортов он может быть и 45°, а инструменты можно намеренно заставлять скоблить, а не резать: работа при этом идет тише, но легче выделывать сложные формы и узоры. Для точки латуни , железа, а также кости от руки пользуются немногими простыми инструментами: "штихель" состоит из стального прута квадратного сечения, заостренного одною диагональною плоскостью, вследствие чего получаются один острый трехгранный угол и два режущих лезвия. Если поставить штихель на подручник так, чтобы короткая диагональ его фаски была почти вертикальна, и заставить его острие резать несколько ниже линии центров, то он действует очень сильно, особенно на железе и стали, но оставляет рубчатую поверхность, которую можно сглаживать его лезвием. Для латуни удобнее прямой инструмент с округленным или заостренным двумя фасками концом. Режущий угол для железа около 60°, а для латуни тупее, от 70° до 80° и даже до 90° для окончательного сглаживания. Скорость вращения для латуни может быть лишь немного менее, чем для дерева, но для железа она должна быть раза в 3 или 4 меньше, иначе инструмент тупится и работа идет плохо. Для тяжелой работы по металлу, когда еще не было станков с суппортами, употребляли "крючки": режущий конец инструмента отгибался под прямым углом, длинную ручку можно было опирать на плечи, а "пяту" на подручник. Таким образом все сопротивление передавалось подручнику, а работнику становилось легко удерживать и направлять инструмент. Токарный крючок был специальным инструментом английских "мильрайтов" (см.) первой половины XIX ст., теперь он вышел из употребления. Форма инструментов для обработки металла при помощи суппорта выработана тщательно. Прежде всего заметим, что всякий инструмент в самоточке будет оставлять на боковой поверхности обтачиваемого предмета винтовую бороздку, а на плоскости, нормальной к оси вращения, бороздку в форме архимедовой спирали. Если острие округлое или треугольное, то бороздка будет выходить сравнительно глубокая, но выдающиеся части каждого оборота будут срезываться при образовании следующего, когда ход винтовой линии значительно меньше ширины снимаемой стружки. Еще отложе будут выходить бороздки, если острие заточено так, что состоит из двух почти взаимно перпендикулярных лезвий, из которых одно почти касательно к образуемой поверхности, а другое, почти нормальное, идет вперед и производит большую часть работы. Такие "боковые резцы" необходимы для вытачивания шеек и выступов с входящими углами. Но при такой форме острый угол пересечения обоих лезвий легко притупляется на стали и железе, поэтому для обточки гладких поверхностей предпочитают резец с одним прямолинейным лезвием, наклоненным градусов на 30 к оси вращения, которое заставляют резать не углом, а серединой. Подвигаясь лишь вдоль радиуса обтачиваемого предмета, такой резец образовал бы линейчатый гиперболоид вращения (см.), касательный к цилиндру в своей шейке, поэтому-то при продольном движении такой резец и оставляет очень гладкую поверхность. Латунь и чугун точат насухо, но железо и сталь дают гладкую поверхность лишь при смачивании их маслом, смесью растительного масла и скипидара или раствором мыла с примесью масла. При снимании наружной коры отливок, содержащей окалину и песчинки, предпочитают простой резец с округлым концом. Для больших Т. станков находят выгодным не выковывать весь резец из стали, а употреблять небольшие куски стальных прутков , прокатанных по разным соответственным надобности профилям сечения, закаленные и вставляемые в особые "державки", завинчиваемые в свою очередь в суппорт. При этом не только получается экономия в материале, но соблюдается точно форма лезвия, потому что режущие брусочки оттачивают лишь на их поперечной поверхности. Обыкновенно поверхность обрабатывают еще шлифным напилком во время вращения на станке, хотя правильность формы при этом нарушается; если же поверхность не будет подвергаться стиранию, то ее можно шлифовать наждаком и полировать обыкновенными приемами. Успех работ зависит от правильной установки инструмента. Желательно заставлять острие резки работать в горизонтальной плоскости, проходящей чрез ось вращения, иначе "угол уклона" DAQ (фиг. I сверху) будет изменяться по мере стачивания предмета, а если обрабатывается его поверхность, перпендикулярная к оси, то около центра лезвие перестанет работать и пройдет или ниже, или выше его.

Это положение вместе с тем и самое выгодное для условий работы: сопротивление тонкой стружки направлено по касательной и может быть выражено силою AQ , а реакция острия - силою АР , прямо противоположною первой. Эти силы при равномерном движении взаимно уничтожаются, не вызывая составляющих, стремящихся надвинуть обрабатываемый предмет на резец или отодвинуть его. Если резец прикасается выше центральной плоскости (ф. I сред. черт.), появится равнодействующая АВ , стремящаяся отдалить его от обрабатываемого предмета; если же он работает ниже, то эта сила будет направлена в обратную сторону, резец будет иметь стремление "заедать", врезываться глубже, если стружка станет толще оттого ли, что встретится неровность, или вследствие неосторожного подвигания винта суппорта. Чтобы соединить оба преимущества, верхнюю поверхность резца AB обыкновенно делают наклонною (фиг. I нижн. черт.) и устанавливают его на линии центров. При снимании толстой стружки на ее отгибание идет больше работы, чем на разъединение частиц металла, в таком случае направление силы Q будет приближаться к АЕ , линии, делящей пополам режущий угол BAD , как для клина. Это обстоятельство заставляет непременно поднимать острие резца или делать его поверхность наклонною, насколько это возможно при необходимости придавать углу уклона DAQ от 3° до 4°, а режущему углу BAD от 51° до 60° для железа, от 51° до 70° для чугуна и от 66° до 80° для бронзы и латуни. Опыт показал, что наибольшее количество стружек получается при наименьшей затрате работы двигателя при скоростях на окружности в стм в секунду: 5,5 для железа, 4,0 для чугуна и 6,5 для бронзы. Стружки при этом имели 0,3 мм толщины и ширину от 10 до 40 мм. Но на деле движущая сила стоит гораздо дешевле времени мастера, поэтому выгодно ускорить работу, затрачивая больше силы и снимая более толстую стружку при большей скорости. Поэтому на практике сильно отступают от этих скоростей. По Дежонку (Dejonc), скорости эти:

Брать еще большие скорости нельзя потому, что резец нагревается, а инструмент и обтачиваемый предмет начинают дрожать и поверхность получается неровная. Поэтому для ускорения работы больших Т. станков, напр. при обточке вагонных колес, недавно применены были с успехом "шарошки" (или "фрезеры", см.) вместо резца (станок Рота в Флорисдорфе, близ Вены). Это вращающиеся режущие колески со многими остриями; работа поэтому распределяется на большую поверхность и при затрате достаточной рабочей силы идет во много раз быстрее. Другое средство для ускорения работы тяжелых Т. станков придумано в Америке : это резцы из особого сорта стали, не теряющей своей твердости и при нагревании до темно-красного каления; поэтому сталь можно обтачивать для "обдирки" при скорости на окружности в 10 стм, мягкое литое железо при 96 стм, серый чугун при 50 стм, а латунь при 100 стм в 1 секунду. Вероятно, что это один из сортов так называемой натурально-твердой стали: сорта эти содержат обыкновенно, кроме углерода, еще вольфрам , титан , молибден и др. элементы. Будучи нагреты выше определенной для каждого сорта температуры, они становятся по охлаждении твердыми, даже если это охлаждение совершалось медленно. Если же их нагреть вторично до другой определенной, но менее высокой температуры, то по охлаждении они оказываются значительно мягче. Нагревание же, не достигающее этой второй "критической температуры", остается без значительного влияния на твердость. Применение таких резцов требует Т. станков более прочной конструкции, так как не все существующие допустят снимание толстых стружек при большой скорости без вредных дрожаний. Очень важную роль в современной массовой фабрикации металлических изделий играют так наз. "револьверные Т. станки". При изготовлении оружия, швейных машин, велосипедов, дамских часов, электрических принадлежностей и т. п. требуются десятки тысяч одинаковых винтов и других мелких точеных частей, которые должны быть настолько близки к тождественности, чтобы заменять одна другую без всякой пригонки. Для изготовления таких предметов из проволоки до 3 стм диам., преимущественно латунной, шпиндель станка (таблица, фиг. 12) делают просверленным насквозь, чтобы пропускать длинную проволоку и уменьшить число обрезков (опорный винт, изображенный на фигуре, вставляется лишь тогда, когда обрабатывают короткие, литые или кованые предметы, закрепляемые в изображенном под станком патроне, в который можно вставлять и губы в виде коробок для заливания мягким металлом предметов неправильной формы). Выставив из патрона сколько нужно проволоки, пускают шпиндель в движение и придвигают к нему первый инструмент револьверного суппорта, пока не будет достигнут особый упорный винт. Тогда отодвигают суппорт назад, при этом особая собачка поворачивает верхнюю часть суппорта, как барабан револьвера, на шестую часть оборота, так что на место первого инструмента становится второй и т. д. Для нарезывания винта или для отрезывания готовой работы служит рычаг, вращающийся в бабке шпинделя. На левом его конце укреплена часть гайки: когда она приведена в прикосновение с винтовым патроном, надетым на левый конец шпинделя, острие на правом конце рычага нарезывает винт, а опорный винт, скользя по платформе, ограничивает глубину нарезки. Устройство Т. станков чрезвычайно разнообразно, часто такой станок приспособлен лишь для одной определенной работы, другие же действуют совершенно автоматически. К Т. станкам надо причислить и "копировальный станок", употребляемый преимущественно для изготовления деревянных ружейных лож, сапожных колодок и др. округлых предметов. Обрабатываемый предмет С (табл. фиг. 4 может поворачиваться около горизонтальной оси, параллельной оси модели А , с которой ось предмета сцеплена зубчатыми колесами, так что вращается с равною скоростью и в одну и ту же сторону. Обрабатывающая шарошками В вращается около оси, параллельной двум первым, но укрепленной на салазках, скользящих перпендикулярно к ним. При медленном вращении модели и предмета шарошки срезывают его, пока упорный винт, связанный с салазками, не станет опираться о поверхность модели и не задержит дальнейшего движения. Тогда тот же процесс начинается в другом сечении модели. Принцип копировального Т. станка применяется в очень разнообразных видах.

Литература обильна, но книг, содержащих применимые сведения, мало. Основная книга: Holtzapffel, "Turning and mechanical manipulation" (т. IV, ). Первый том вышел в г., но существует новое продолженное издание, вышедшее в девяностых годах. Тиме, "Основы машиностроения" (); Найденко, "Руководство для токарей" (Екатеринослав , ; многое пригодно для учеников; в объяснения автор не вдается); такого же характера, но содержит очень много ценных сведений: Е. Dejonc, "La Mechanique pratique" (П., ); Joshua Rose, "The practical Machinist".

Предисловие к шестому изданию
Введение
Раздел первый. Краткие сведения о токарном деле
Глава I. Основные понятия об устройстве токарно-винторезного станка
§ 1. Назначение токарных станков
§ 2. Типы токарных станков
§ 3. Основные узлы токарно-винторезного станка
§ 4. Станина
§ 5. Передняя бабка
§ 6. Механизмы подачи
§ 7. Суппорт
§ 8. Фартук
§ 9. Задняя бабка
§ 10. Правила ухода за токарным станком
Глава II. Основы процесса резания металлов
§ 1. Элементы резания при обработке на токарных станках
§ 2. Процесс образования стружки
§ 3. Смазочно-охлаждающие жидкости
§ 4. Материалы, применяемые для изготовления резцов и других режущих инструментов
§ 5. Токарные резцы
§ 6. Заточка резцов
Глава III. Краткие сведения о технике безопасности
§ 1. Значение техники безопасности
§ 2. Техника безопасности в механических цехах
§ 3. Правила пожарной безопасности
Глава IV. Обтачивание наружных цилиндрических поверхностей
§ 1. Резцы для продольного обтачивания
§ 2. Установка и закрепление резца
§ 3. Установка и закрепление деталей в центрах
§ 4. Установка и закрепление деталей в патронах
§ 5. Навинчивание и свинчивание кулачковых патронов
§ 6. Приемы обтачивания гладких цилиндрических поверхностей
§ 7. Приемы обтачивания цилиндрических поверхностей с уступами
§ 8. Элементы режима резания при обтачивании
§ 9. Уход за резцом
§ 10. Измерение деталей при обтачивании цилиндрических поверхностей
§ 11. Брак при обтачивании цилиндрических поверхностей и меры его предупреждения
§ 12. Техника безопасности при обтачивании цилиндрических поверхностей
Глава V. Обработка торцовых поверхностей и уступов
§ 1. Резцы, применяемые при обработке торцовых поверхностей и уступов, и их установка
§ 2. Приемы подрезания торцовых поверхностей и уступов
§ 3. Приемы измерения торцовых поверхностей и уступов
§ 4. Техника безопасности при подрезании торцовых поверхностей и уступов
§ 5. Брак при подрезании торцовых поверхностей и уступов и меры его предупреждения
Глава VI. Вытачивание наружных канавок и отрезание
§ 1. Резцы для вытачивания канавок и отрезания, их установка
§ 2. Приемы вытачивания канавок и отрезания
§ 3. Измерение канавок
§ 4. Брак при вытачивании канавок и отрезании и меры его предупреждения
Глава VII. Сверление и рассверливание цилиндрических отверстий
§ 1. Сверла
§ 2. Затачивание спиральных сверл
§ 3. Закрепление сверл
§ 4. Приемы сверления
§ 5 Элементы режима резания при сверлении
§ 6. Рассверливание
§ 7. Особенности конструкций некоторых типов сверл
§ 8. Замена ручной подачи механической
§ 9. Брак при сверлении и меры его предупреждения
Глава VIII. Центрование
§ 1. Назначение и формы центровых отверстий
§ 2. Разметка центровых отверстий
§ 3. Приемы центрования
§ 4. Брак при центровании и меры его предупреждения
Глава IX. Зенкерование, развертывание и растачивание цилиндрических отверстий. Вытачивание внутренних канавок
§ 1. Зенкерование цилиндрических отверстий
§ 2. Развертывание цилиндрических отверстий
§ 3. Растачивание цилиндрических отверстий
§ 4. Приемы растачивания сквозных и глухих цилиндрических отверстий
§ 5. Брак при обработке цилиндрических отверстий и меры его предупреждения
§ 6. Приемы подрезания внутренних торцовых поверхностей и вытачивания внутренних канавок
§ 7. Измерение цилиндрических отверстий, внутренних канавок и выточек
Глава X. Токарная обработка несложных деталей
§ 1. Токарная обработка штыря
§ 2. Токарная обработка гладких и ступенчатых валов
Глава XI. Основные принципы построения технологических процессов обработки деталей на токарных станках
§ 1. Понятие о технологическом и производственном процессах
§ 2. Элементы технологического процесса
§ 3. Типы производств в машиностроении
§ 4. Принципы разработки технологического процесса механической обработки
§ 5. Понятие об установочных базах и их выбор
Раздел второй. Обработка конических поверхностей. Обтачивание фасонных поверхностей. Отделка поверхностей. Нарезание треугольной резьбы
Глава XII. Обработка конических поверхностей
§ 1. Понятие о конусе и его элементах
§ 2. Способы получения конических поверхностей
§ 3. Обтачивание конических поверхностей поперечным смещением корпуса задней бабки
§ 4. Обтачивание конических поверхностей поворотом верхней части суппорта
§ 5. Обработка конических поверхностей с применением конусной линейки
§ 6. Обработка конических поверхностей широким резцом
§ 7. Растачивание и развертывание конических отверстий
§ 8. Измерение конических поверхностей
§ 9. Брак при обработке конических поверхностей и меры его предупреждения
Глава XIII. Обтачивание фасонных поверхностей
§ 1. Фасонные резцы, их установка и работа ими
§ 2. Обтачивание фасонных поверхностей проходными резцами
§ 3. Обработка фасонных поверхностей по копиру
§ 4. Брак при обтачивании фасонных поверхностей и меры его предупреждения
Глава XIV. Отделка поверхностей
§ 1. Шероховатость обработанной поверхности
§ 2. Тонкое точение
§ 3. Доводка или притирка
§ 4. Обкатывание поверхности роликом
§ 5. Накатывание
Глава XV. Нарезание резьбы
§ 1. Общее сведения о резьбах
§ 2. Типы резьб и их назначение
§ 3. Измерение и контроль резьбы
§ 4. Нарезание треугольной резьбы плашками
§ 5. Нарезание треугольной резьбы метчиками
§ 6. Нарезание резьбы резцами
§ 7. Резьбовые гребенки
§ 8. Настройка токарно-винторезного станка для нарезания резьбы
§ 9. Примеры подсчета сменных зубчатых колес
§ 10. Приемы нарезания резьбы резцами
§ 11. Высокопроизводительные методы нарезания резьбы
§ 12. Брак при нарезании резьбы резцами и меры его предупреждения
Раздел третий. Токарные станки. Механизация и автоматизация процессов обработки деталей на токарных станках
Глава XVI. Устройство токарных станков
§ 1. Краткий исторический обзор развития токарного станка
§ 2. Основные типы станков токарной группы
§ 3. Условное обозначение токарных станков
§ 4. Основные характеристики токарно-винторезных станков отечественного производства
§ 5. Приводы токарных станков
§ 6. Кинематическая схема станка
§ 7. Механизмы коробок скоростей и подач
§ 8. Суппорт токарно-винторезного станка
§ 9. Фартук
§ 10. Токарно-винторезный станок модели 1К62
§ 11. Станки токарной группы
Глава XVII. Проверка токарно-винторезного станка на точность
§ 1. Инструмент для проверки станков на точность
§ 2. Основные методы проверки токарного Станка
Глава XVIII. Механизация и автоматизация процессов обработки деталей на токарных станках
§ 1. Устройства, механизирующие процесс обработки на токарных станках
§ 2. Устройства, автоматизирующие процесс обработки на токарных станках
§ 3. Станки с программным управлением
§ 4. Автоматические линии
Раздел четвертый. Основы учения о резании металлов
Глава XIX. Общие сведения о резании
§ 1. Краткий исторический обзор
§ 2. Материалы, применяемые для изготовления режущих инструментов
§ 3. Углы резца
§ 4. Установка резца
Глава XX. Основные процессы резания
§ 1. Процесс образования стружки
§ 2. Основные сведения о силах, действующих на резец
§ 3. Теплота резания
§ 4. Стойкость резца
§ 5. Охлаждение инструмента
§ 6. Влияние различных факторов на выбор скорости резания
Раздел пятый. Высокопроизводительное резание металлов. Выбор наивыгоднейших режимов резания
Глава XXI. Высокопроизводительное резание металлов
§ 1. Сущность скоростного резания металлов
§ 2. Геометрия резцов для скоростного резания
§ 3. Современные конструкции высокопроизводительных резцов
§ 4. Требования, предъявляемые к станкам для скоростного точения
§ 5. Приспособления, применяемые при скоростном резании
§ 6. Приспособления для отвода стружки
§ 7. Неполадки при скоростном точении
§ 8. Основные правила работы резцами, оснащенными пластинками из твердых сплавов
Глава XXII. Выбор наивыгоднейших режимов резания
§ 1. Понятие о производительности труда
§ 2. Понятие о мощности при точении
§ 3. Крутящий момент
§ 4. Паспорт токарного станка
§ 5. Выбор наивыгоднейших режимов резания
Раздел шестой. Сложные токарные работы
Глава XXIII. Нарезание прямоугольной и трапецеидальной резьб
§ 1. Общие сведения о резьбах для передачи движения
§ 2. Нарезание прямоугольной и трапецеидальной резьб
§ 3. Способы нарезания многозаходных резьб
§ 4. Деление многозаходных резьб на заходы
§ 5. Высокопроизводительные методы нарезания многозаходных резьб
§ 6. Основные сведения о нарезании резьбы вращающимися резцами
Глава XXIV. Токарная обработка деталей со сложной установкой
§ 1. Обработка деталей в люнетах
§ 2. Обработка деталей на планшайбе
§ 3. Обработка деталей на угольниках
§ 4. Обработка деталей на оправках
§ 5. Обработка эксцентриковых деталей
Раздел седьмой. Организация рабочего места и труда токаря. Технологический процесс обработки деталей на токарных станках
Глава XXV. Организация рабочего места и труда токаря
§ 1. Организация рабочего места токаря
§ 2. Планировка рабочего места токаря
§ 3. Порядок и чистота на рабочем месте
§ 4. Организация труда на рабочем месте
§ 5. Многостаночная работа
Глава XXVI. Рациональные методы токарной обработки
§ 1. Технологические приемы, применяемые токарями-новаторами
§ 2. Сокращение основного (машинного) времени
§ 3. Сокращение вспомогательного времени
§ 4. Комплексный метод сокращения штучного времени
Глава XXVII. Технологический процесс обработки деталей на станках
§ 1. Общие сведения о разработке технологического процесса обработки деталей
§ 2. Порядок составления технологического процесса обработки деталей
§ 3. Метод групповой обработки деталей
§ 4. Карты технологического процесса обработки деталей на станках
§ 5. Технологическая дисциплина
Глава XXVIII. Технологические процессы обработки деталей на токарных станках
§ 1. Технологический процесс токарной обработки втулок
§ 2. Технологический процесс токарной обработки дисков
§ 3. Технологический процесс токарной обработки стаканов
Глава XXIX. Примеры составления технологических процессов обработки деталей на токарных станках
§ 1. Обработка ступенчатого валика
§ 2. Обработка нажимной гайки
Приложение I. Паспорт токарно-винторезного станка модели 1К12
Приложение II. Классификатор переходов
Приложение III. Операционная карта механической обработки
Приложение IV. Технологическая карта механической обработки ступенчатого валика
Приложение V. Технологическая карта механической обработки нажимной гайки