Кот ученый - Образовательный портал

Значение слова «информатика. Информатика как наука: предмет изучения и исследования Кто придумал информатику

1.Определение информатики

Информатика - это техническая наука, изучающая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

Предмет информатики есть информационная технология, которая включает:

Аппаратное обеспечение средств вычислительной техники (ВТ);

Программное обеспечение средств ВТ;

Средства взаимодействия аппаратного и программного обеспечения;

Средства взаимодействия человека с аппаратными и программными средствами.

Взаимодействие - интерфейс.

Методы и средства взаимодействия человека с аппаратными и программными средствами называют пользовательским интерфейсом.

Интерфейсы:

· аппаратные;

· программные;

· аппаратно-программные.

Основная задача информатики - систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники.

Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а также в методическом обеспечении новых технологических исследований.

На всех этапах технического обеспечения информационных процессов для информатики ключевым понятием является эффективность.

Для аппаратных средств под эффективностью понимают отношение производительности оборудования к его стоимости (с учетом стоимости эксплуатации и обслуживания).

Для программного обеспечения под эффективностью понимают производительность лиц, работающих с ними (пользователей).

В программировании под эффективностью понимают объем программного кода, создаваемого программистами в единицу времени.

Информатика - практическая наука.

Выделим следующие направления для практических приложений:

1) архитектура вычислительных систем (приемы и методы построения систем, предназначенных для автоматической обработки данных);

2) интерфейсы вычислительных систем (приемы и методы управления аппаратным и программным обеспечением);

3) программирование (приемы, методы и средства разработки компьютерных программ);

4) преобразование данных (приемы и методы преобразования структур данных);

5) защита информации (обобщение приемов, разработка методов и средств защиты данных);

6) автоматизация (функционирование программно-аппаратных средств без участия человека);

7) стандартизация (обеспечение совместимости между вычислительными системами различных типов).

Термин ИНФОРМАТИКА

informacion automatique

информация автоматика

автоматическая обработка информации

Используется во Франции и странах Восточной Европы; в США и Западной Европе – Computer Science (наука о средствах вычислительной техники).

Количество компьютеров в мире более 500 млн. единиц!

Каждый по-своему уникален.

В среднем 1 раз в 1,5 года удваиваются основные параметры аппаратных средств;

1 раз в 2-3 года меняются поколения программного обеспечения;

1 раз в 5-7 лет меняется база стандартов, протоколов и интерфейсов.

Отличие ИНФОРМАТИКИ от других технических наук заключается в том, что ее предмет меняется ускоренными темпами.

От специалистов требуется широкий уровень знаний и практических навыков.

2.История развития вычислительной техники

1623г - механическое устройство для выполнения сложения (на базе механических часов); автор- Вильгельм Шикард; университет Тюбингена, Германия.

1642г - француз Блез Паскаль разработал более компактное суммирующее устройство - первый механический калькулятор, выпускался серийно .

1673г – немец Г. В. Лейбниц создал механический калькулятор, который выполнял 4 арифметических действия.

В 18 веке (эпоха Просвещения) появились более совершенные модели, но они оставались механическими .

Идея программного управления вычислениями принадлежит английскому математику Чарльзу Бэббиджу (1792-1871).

Аналитическая машина Бэббиджа.

Огаста Ада Лавлейс (леди Байрон).

В 20 веке идеи Бэббиджа получили развитие в работах Джона фон Неймана (1941, 1946гг).

3.Представление информации в ЭВМ

Информация- это сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специализированным устройством для обеспечения целенаправленной деятельности.

Информация:

текстовая

числовая

Информация графическая

звуковая

видео и т. д.

Для представления информации в ЭВМ используется принцип двоичного кодирования, т. е. элементы информации любого типа кодируются последовательностями двух знаков 0 и 1.

0 и 1 – цифры двоичной системы счисления (binary digit).

Система счисления – совокупность приемов наименования и записи чисел.

Примеры.

Единицы представления информации

8 битов=1 байт;

1Кбайт=210 байтов (1024 байтов);

1Мбайт=210 Кбайтов =220 байтов;

1Гбайт=210 Мбайтов =220 Кбайтов.

4.Принципы построения ЭВМ

ЭВМ - комплекс технических и программных средств для автоматизации подготовки и решения задач пользователей.

Абстрактная модель ЭВМ - машина фон Неймана.

Рисунок 1- Машина фон Неймана

Обозначения:

ЦП - центральный процессор;

УУ – устройство управления;

АЛУ – арифметико-логическое устройство;

передача данных;

передача управляющих сигналов.

Принципы фон Неймана:

1. принцип линейности и однородности памяти;

2. принцип хранимой программы;

3. принцип неразличимости команд и данных;

4. принцип последовательного исполнения команд;

5. принцип автоматической работы (программного управления).

5.Классификация ЭВМ

Классификация по назначению:

· большие ЭВМ;

· мини ЭВМ;

· микро ЭВМ;

· персональные ЭВМ (ПЭВМ, ПК).

ПЭВМ – самый массовый тип, и составляют ≈80% от всех компьютеров в мире.

Фирма IBM- крупнейший производитель компьютеров; до 2005г 80% ее продукции – ПЭВМ.

Одна из основных характеристик ПЭВМ - тип используемого микропроцессора (м/пр).

Рынок м/пр очень динамичен: каждые год-два обновляются основные типы.

Intel: Pentium, Celeron.

AMD: Athlon, Sempron.

Важнейшие характеристики ПК – объем оперативной памяти (ОП) и быстродействие.

Объем памяти определяется количеством хранимой информации, быстродействие - количеством операций в единицу времени (тактовой частотой процессора).

Объем ОП 32 Кб – 4Гб;

частота 1Ггц и более.

Память ПК:

· оперативная память (32 Кб – 4Гб);

· кэш-память(256Кб-2Мб);

· внешняя память (емкость зависит от типа запоминающего устройства).

Внешняя память:

· дискета (1,4Мб);

· винчестер или жесткий диск (десятки и сотни Гб);

· компакт-диски или CD-ROM (сотни Мб);

· DVD-диски (десятки Гб);

· флэш-память (64,128,256,512Мб,

· магнитооптические диски (десятки Гб).

Емкость памяти определяет, какие программные продукты могут быть установлены на ПК.

Например, ОС Windows 2000 требует объем винчестера не менее 600 Мб и не менее 64 Мб ОП;

ОС Windows XP- соответственно 1Гб и 256Мб.

ПК-это совокупность аппаратных и программных средств, вычислительная система.

Базовая

аппаратная конфигурация ПК:

1. системный блок;

2. монитор;

3. клавиатура;

4. манипулятор мышь.

Системный блок – узел, внутри которого расположены основные компоненты ПК: процессор, память, видеокарта.

Монитор – устройство отображения информации; характеризуется размером видимой части экрана по диагонали; измеряется в дюймах(17’’,19’’и т. д.).

Для ЭЛ мониторов качество-размер зерна (0,24мм).

Для ЖК мониторов:

разрешение 1280х1024;

угол обзора (160о);

яркость 300;

контрастность 1000.

Клавиатура и мышь - устройства управления компьютером.

Монитор и клавиатура – простейший интерфейс пользователя.

Периферийные устройства.

Информатика как наука: предмет изучения и исследования.

Информатика наука, сложившаяся сравнительно недавно. Её развитие связано с появлением в середине ХХ века электронно-вычислительных машин, которые явились универсальными средствами для хранения, обработки и передачи информации.

Информатика - это комплексная, техническая наука, основанная на использовании компьютерной техники, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

Термин "информатика" (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика". Этот термин введён во Франции в середине 60-х годов XX века, когда началось широкое использование вычислительной техники. Тогда в англоязычных странах вошёл в употребление термин "Computer Science", что означает буквально "компьютерная наука", для обозначения науки о преобразовании информации, которая базируется на использовании вычислительной техники. Теперь эти термины являются синонимами.

Предмет информатики как науки составляют:

1. Аппаратное обеспечение средств вычислительной техники;

2. Программное обеспечение средств вычислительной техники;

3. Средства взаимодействия аппаратного и программного обеспечения;

Средства взаимодействия человека с аппаратными и программными средствами.

Основной задачей информатики как науки - это систематизация приёмов и методов работы с аппаратными и программными средствами вычислительной техники.

Информатика как наука: основные понятия и определения.

Основные термины

Информационные ресурсы - Различные формализованные знания (теории, идеи, изобретения), данные (в том числе документы), технологии и средства их сбора, обработки, анализа, интерпретации и применения. А также обмена между источниками и потребителями информации.

Информационная технология –

Совокупность научных дисциплин, занимающихся изучением, созданием и применением методов, способов, действий, процессов, средств, правил, навыков, используемых для получения новой информации (сведений, знаний), сбора, обработки, анализа, интерпретации, выделения и применения данных, контента и информации с целью удовлетворения информационных потребностей народного хозяйства и общества в требуемом объёме и заданного качества.

Совокупность самих этих методов, способов, действий и т. д.

Информационный процесс - Последовательность действий (операций) по сбору, передаче, обработке, анализу, выделению и использованию с различной целью информации (и/или её носителей) в ходе функционирования и взаимодействия материальных объектов.

Информационный технологический процесс - Компонент информационной технологии как практического инструмента рецептурной деятельности, часть производственного процесса, состоящая из последовательности согласованных технологических операций, связанных со сбором и обработкой <данных> как носителей информации, выделением из них необходимых сведений, новостей, знаний, их накоплением, анализом, интерпретацией и применением.

Информация- это содержание какого-либо сообщения, сведения о чем-либо, рассматриваемые в аспекте их передачи в пространстве и времени.

Система знаний- это умение решать задачи из определенного круга задач, включающего не только процедурные задачи, но и творческие, проблемные и поисковые задачи.

Понятие «иформации», виды существования и способы передачи.

Информация относится к фундаментальным, неопределяемым понятиям науки информатика. Тем не менее смысл этого понятия должен быть разъяснен. Предпримем попытку рассмотреть это понятие с различных позиций.

Термин информация происходит от латинского слова informatio, что означает сведения, разъяснения, изложение. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности:

··в быту информацией называют любые данные, сведения, знания, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.;

··в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов (в этом случае есть источник сообщений, получатель (приемник) сообщений, канал связи);

··в кибернетике под информацией понимают ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы;

··в теории информации под информацией понимают сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Согласно Большому энциклопедическому словарю, информация - первоначально - сведения, передаваемые людьми устным, письменным или другим способом (с помощью условных сигналов, технических средств и т.д.); с сер. XX в. - общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире; передачу признаков от клетки к клетке, от организма к организму; одно из основных понятий кибернетики.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п. - см. билет № 2), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объем сообщения.

Информация может существовать в виде:

·· текстов, рисунков, чертежей, фотографий;

·· световых или звуковых сигналов;

·· радиоволн;

·· электрических и нервных импульсов;

·· магнитных записей;

·· жестов и мимики;

·· запахов и вкусовых ощущений;

·· хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т.д.

Формы передачи информации:

- от человека к человеку

- от человека к компьютеру

- от компьютера к компьютеру

А также обмен сигналами в животном и растительном мире, передачу признаков т клетке к клетке, от организма к организму.

Информация в технических устройствах может быть передана электрическими, магнитными и световыми импульсами.

Понятие «информации», методы количественного выражения, единицы измерения.

Информация, вводимая в компьютер должна быть конкретной и однозначной. Издавна люди пользовались шифрами. Самыми простыми и удобными из них были цифровые шифры. Самая разнообразная информация - цвета, ноты, дни недели - может быть представлена в виде цифр. .

Под количеством информации понимают количество кодируемых, передаваемых или хранимых символов.

Наименьшей единицей информации является бит (от англ. binary digit (bit)).

Бит - это наименьшая единица памяти, необходимая для хранения одного из двух знаков 0 и 1, используемых для внутримашинного представления данных и команд.

В современных компьютерах помимо двоичной системы счисления применяют и другие: восьмеричную и шестнадцатеричную системы счисления – для компактной записи двоичных кодов чисел и команд.

В информатике принято рассматривать последовательности длиной 8 бит. Такая последовательность называется байтом (1 байт=8 битам).

Байт - это восьмиразрядный двоичный код, с помощью которого можно представить один символ.

Эргономичность - свойство, характеризующее удобство формы или объема информации с точки зрения данного потребителя.

Информацию следует считать особым видом ресурса, при этом имеется в виду толкование “ресурса” как запаса неких знаний материальных предметов или энергетических, структурных или каких-либо других характеристик предмета. В отличие от ресурсов, связанных с материальными предметами, информационные ресурсы являются неистощимыми и предполагают существенно иные методы воспроизведения и обновления, чем материальные ресурсы.

С этой точки зрения можно рассмотреть такие свойства информации:

· запоминаемость;

· передаваемость;

· воспроизводимость;

· преобразуемость;

· стираемость.

Запоминаемость - одно из самых важных свойств. Запоминаемую информацию будем называть макроскопической (имея в виду пространственные масштабы запоминающей ячейки и время запоминания). Именно с макроскопической информацией мы имеем дело в реальной практике.

Передаваемость информации с помощью каналов связи (в том числе с помехами) хорошо исследована в рамках теории информации К.Шеннона. В данном случае имеется в виду несколько иной аспект - способность информации к копированию, т.е. к тому, что она может быть “запомнена” другой макроскопической системой и при этом останется тождественной самой себе. Очевидно, что количество информации не должно возрастать при копировании.

Воспроизводимость информации тесно связана с ее передаваемостью и не является ее независимым базовым свойством. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость информации, т.е. что при копировании информация остается тождественной самой себе.

Фундаментальное свойство информации - преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может.

Свойство стираемости информации также не является независимым. Оно связано с таким преобразованием информации (передачей), при котором ее количество уменьшается и становится равным нулю.

Сигнал-это изменение некоторой физической величины во времени, которое характеризируется определенными параметрами. Беспрерывный сигнал называется аналоговым. Сигнал называется дискретным, если параметр сигнала может принимать конечное количество значений.

Транспортировка данных - прием и передача данных между участниками информационного процесса. Источник данных принято называть сервером, а потребителя - клиентом;

Информатизация - это сложный социальный процесс, связанный со значительными изменениями в образе жизни населения. Он требует серьезных усилий на многих направлениях, включая ликвидацию компьютерной неграмотности, формирование культуры использования новых информационных технологий и др.

Информатизация общества - организованный социально - экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав граждан, органов государственной власти, органов местного самоуправления, организаций, общественных объединений на основе формирования и использования информационных ресурсов.

Информационная технология - совокупность методов и спосо­бов получения, обработки, представления информации, направ­ленных на изменение ее состояния, свойств, формы, содержания и осуществляемых в интересах пользователей.

Можно выделить три уровня рассмотрения информационных технологий:

первый уровень - теоретический. Основная задача - создание комплекса взаимосвязанных моделей информационных процессов, совместимых по параметрам и критериям;

второй уровень - исследовательский. Основная задача - разработка методов, позволяющих автоматизирование конст­руировать оптимальные конкретные информационные технологии;

Информатизация общества - организованный социально - экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав граждан, органов государственной власти, органов местного самоуправления, организаций, общественных объединений на основе формирования и использования ин Информация всегда играла чрезвычайно важную роль в жизни человека.

Сейчас, в первой половине 21-ого века роль информации в жизни человека является определяющей – чем больше навыков и знаний он имеет, тем выше ценится как специалист и сотрудник, тем больше имеет уважения в обществе.

Познавая окружающий мир, человек постоянно имеет дело с информацией. Она помогает человеку правильно оценить происходящие события, принять обдуманное решение, найти наиболее удачный вариант своих действий. Интуитивно мы понимаем, что информация - это то, чем каждый из нас пополняет собственный багаж знаний. Информация также является сильнейшим средством воздействия на личность и общество в целом. Кто владеет наибольшим объемом информации по какому-либо вопросу, тот всегда находится в более выигрышном положении по сравнению с остальными.

Информация стала одним из важнейших стратегических, управленческих ресурсов, наряду с ресурсами - человеческим, финансовым, материальным. Ее производство и потребление составляют необходимую основу эффективного функционирования и развития различных сфер общественной жизни, и, прежде всего, экономики. А это означает, что не только каждому человеку становятся доступными источники информации в любой части нашей планеты, но и генерируемая им новая информация становится достоянием всего человечества. В современных условиях право на информацию и доступ к ней имеют жизненную ценность для всех членов общества. Возрастающая роль информации в обществе явилась предметом научного осмысления. Были выдвинуты теории, объясняющие ее место и значение. Наиболее популярными являются теории постиндустриального и информационного общества.

Мир вступает в новую эру – информационную, в век электронной экономической деятельности, сетевых сообществ и организаций без границ. Приход нового времени радикально изменит экономические и социальные стороны жизни общества. Подобные изменения самым прямым образом касаются места человека в информационном мире. Человек меняется в соответствии с вектором информационно-технических характеристик общества. Однако это совсем не пассивное принятие новых условий производства и потребления. Человек выступает субъектом информационной реальности, далеко выходящей за информационно технические характеристики. Информатизация повседневной жизни и появление нового информационного поля человеческого бытия не проходит бесследно для жизненного мира человека. В электронном пространстве изменяются поведенческие стандарты и ценностные ориентации личности.

Система счисления: основные понятия

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией сложения.

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, происходит перенос единицы в следующий слева разряд. При вычитании, если необходимо, делают заем. В ВТ с целью упрощения реализации арифметических операций применяют специальные коды: прямой, обратный, дополнительный. За счет этого облегчается определение знака результата операции, а операция вычитания чисел сводится к арифметическому сложению. В результате упрощаются устройства, выполняющие арифметические операции.

Кодирование информации: назначение, основные понятия и определения

Рассмотрим основные понятия, связанные с кодированием информации. Для передачи в канал связи сообщения преобразуются в сигналы. Символы, при помощи которых создаются сообщения, образуют первичный алфавит, при этом каждый символ характеризуется вероятностью его появления в сообщении. Каждому сообщению однозначно соответствует сигнал, представляющий определенную последовательность элементарных дискретных символов, называемых кодовыми комбинациями. Кодирование - это преобразование сообщений в сигнал, т.е. преобразование сообщений в кодовые комбинации. Код - система соответствия между элементами сообщений и кодовыми комбинациями. Кодер - устройство, осуществляющее кодирование. Декодер - устройство, осуществляющее обратную операцию, т.е. преобразование кодовой комбинации в сообщение. Алфавит - множество возможных элементов кода, т.е. элементарных символов (кодовых символов) X = {xi}, где i = 1, 2,..., m. Количество элементов кода - m называется его основанием. Для двоичного кода xi = {0, 1} и m = 2. Конечная последовательность символов данного алфавита называется кодовой комбинацией (кодовым словом). Число элементов в кодовой комбинации - n называется значностью (длиной комбинации). Число различных кодовых комбинаций (N = mn) называется объемом или мощностью кода.

Если N0 - число сообщений источника, то N N0. Множество состояний кода должно покрывать множество состояний объекта. Полный равномерный n - значный код с основанием m содержит N = mn кодовых комбинаций. Такой код называется примитивным.

Одним из первых устройств (VI-V вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев - «суанпан»

В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в 1642г. молодой французский математик и физик Блез Паскаль создал «суммирующую» машину, названной Паскалиной, которая кроме сложения выполняла и вычитание.

В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр - «Феликс». Эти счётные устройства использовались несколько десятилетий, став основным техническим средством облегчения человеческого труда.

Новый инструмент - ЭВМ - служит человеку пока лишь чуть больше полвека. ЭВМ - одно из величайших изобретений середины XX века, изменивших человеческую жизнь во многих ее проявлениях. Вычислительная техника превратилась в один из рычагов обеспечивающих развитие и достижения научно-технического прогресса. Первым создателем автоматической вычислительной машины считается немецкий учёный К. Цузе. Работы им начаты в 1933 году, а в 1936 году он построил модель механической вычислительной машины, в которой использовалась двоичная система счисления, форма представления чисел с «плавающей» запятой, трёхадресная система программирования и перфокарты. (там очень много, посмотрите конспект §2.1, 2.2).

Разработка первой серии электронной машины UNIAC (Universal Automatic Computer) начата примерно в 1947 году. Д. П. Эккертом и Д. Мочли, основавшими фирму Eckert-Mauchly

В 1960 году фирма IBM разработала мощную вычислительную систему «Stretch» (IBM-7030), разработчики которой добились 100-кратного увеличения быстродействия: в её состав входило 169 тыс. дрейфовых транзисторов с тактовой частотой переключения в 100 МГц.

Приборах (транзисторах).

- Третье поколение (70г.): ЭВМ на полупроводниковых интегральных

Малые ЭВМ.

ПЭВМ (персональные ЭВМ).

Сети ЭВМ.

Принципы построения ЭВМ.

Информационных задач.

Программы вычислений.

Международный стандарт).

Обработки.

Требования пользователей к выполнению вычислительных работ

УВС – устройство ввода.

УУ – устройство управления.

УВ – устройство вывода.

ЗУ+АЛУ+УУ – процессор.

В исполнении.

Устройств.

Компьютер – это электронное устройство, предназначенное для работы с информацией, а именно введение, обработку, хранение, вывод и передачу информации. Кроме того, ПК представляет собой единое двух сущностей – аппаратной и программной частей (что и отражено на следующей схеме)

Компоненты компьютера

Рабочая станция (Work Station) представляет собой мощный компьютер, основанный обычно на двухпроцессорной платформе, оснащенный максимальным объемом быстрой оперативной памяти, массивом жестких дисков и часто включенный в локальную сеть предприятия. В зависимости от решаемых задач рабочие станции бывают графическими, для научных расчетов или иного назначения.

Графическую рабочую станцию комплектуют ЗD-видеокартой профессионального класса, устройствами оцифровки и захвата сигналов телевизионного формата, высокоточными сканерами и другим необходимым оборудованием.

Домашний компьютер обычно используют для развлечений и выполнения не слишком сложных учебных (рабочих) заданий. Мультимедийная направленность домашнего ПК выражается в оснащении его процессором и видеокартой среднего класса, приводом DVD, качественным монитором и комплектом хорошей акустики. Зачастую предусматривается подключение компьютера к телевизору для просмотра фильмов в форматах MPEG-4 и DVD на экране ТВ. Непременным условием является подключение к Интернету через модем или сетевую карту. Дополнительным оборудованием для домашнего компьютера являются ТВ-тюнер, сканер, струйный фотопринтер, WEB-камера.

Игровой компьютер требует наличия самой мощной графической подсистемы. Поэтому главным его элементом является графическая карта и адекватный потребностям процессор при достаточном объеме оперативной памяти. Игровой компьютер дополнительно комплектуют джойстиком, рулем (штурвалом), педалями, устройствами виртуальной реальности (шлемы, очки, перчатки).

Дизайнерский компьютер предназначен для выполнения сложных графических работ (кроме ЗD-графики кинематографического уровня) и обработки видео в режиме реального времени. По сути, это рабочая станция начального уровня, в достаточно компактном исполнении. Конкретная конфигурация дизайнерского ПК зависит от специфики решаемых задач. Для работы с ЗD-графикой требуется мощная видеокарта, для работы с видео – самый производительный процессор и так далее.

Ноутбук (Notebook) является переносным персональным компьютером. Помимо компактных габаритов, ноутбук отличается от настольного компьютера возможностью работы от аккумуляторов. Автономное функционирование обусловило высокие требования режиму энергопотребления компонентов. Обычно в ноутбуках используют специальные модификации процессоров, графических чипсетов, жестких дисков с низким энергопотреблением и автоматическим регулированием производительности в зависимости от решаемой задачи.

Обычно ноутбуки классифицируют по размеру, диагонали дисплея и числу “шпинделей” (отдельных приводов: жесткий диск, дисковод CD-ROM, дисковод гибких дисков и др.). Например, выражение “двухшпиндельный” ноутбук подразумевает наличие в компьютере жесткого диска и еще одного дисковода (чаще комбинированного привода DVD/CD-RW).

Настольный ноутбук (DeskNote). Этот класс компьютеров возник и развился в 2002 году. Его отличие от ноутбуков заключается в отсутствии аккумуляторов (и, как следствие, невозможности автономной работы), использовании процессоров для обычных настольных ПК, а иногда и адаптеров ЗD-графики высокого класса.

Планшетный ПК (Tablet PC) характеризуется наличием отдельного сенсорного дисплея с возможностью рукописного ввода и специального электронного пера. Некоторые модели комплектуются клавиатурой, трекболом, приводом CD-ROM, жестким диском.

Карманный ПК (Personal Digital Assistant, PDA) примыкает к товарной нише персональных компьютеров. Невысокая производительность, ограниченный набор программ и неудобный интерфейс пользователя сужают сферу применения КПК. Однако многие КПК позволяют подключаться к настольному компьютеру для переноса данных: телефонного справочника, записной книжки и прочих, позволяют читать литературные произведения в электронном виде, просматривать видео и т.д.

Персональные компьютеры являются наиболее широко используемыми, их мощность постоянно увеличивается, область применения расширяется. Однако их возможности ограничены, и для решения специфичных задач, требующих объемных вычислений, высочайшего быстродействия, применяют “не-персональные” компьютеры: супер-ЭВМ, большие ЭВМ (мэйнфреймы), мини-ЭВМ.

Мультимедиа (multimedia-многосредовость) -- это интерактивные системы, обеспечивающие работу с неподвижными изображениями и движущимся видео, анимированной компьютерной графикой и текстом, речью и высококачественным звуком.

Мультимедиа делится на программную и аппаратную. Аппаратная сторона мультимедиа может быть представлена как стандартными средствами -- видеоадаптерами, мониторами, дисководами, накопителями на жёстких дисках, так и специальными средствами -- звуковыми картами, приводами CD-ROM и звуковыми колонками. Программная сторона без аппаратной лишена смысла. Программные средства делятся на прикладные и специализированные. Прикладные -- это сами приложения Windows, представляющие пользователю информацию в том или ином виде. Специализированные -- это средства создания мультимедийных приложений -- мультимедиа проектов (например, программа для создания мультимедиа презентаций MicroSoft Power Point). Сюда входят графические редакторы, редакторы видеоизображений (например, Adobe Premier), средства для создания и редактирования звуковой информации и т.д.

Так же мультимедиа может быть грубо классифицирована как линейная и нелинейная. Аналогом линейного способа представления может являться кино. Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных.

Одной из основных сфер применения систем мультимедиа является образование в широком смысле слова, включая и такие направления как видеоэнциклопедии, интерактивные путеводители, тренажеры, ситуационно-ролевые игры и др. Компьютер, снабженный платой мультимедиа, немедленно становится универсальным обучающим или информационным инструментом по практически любой отрасли знания и человеческой деятельности. Очень большие перспективы перед мультимедиа в медицине: базы знаний, методики операций, каталоги лекарств и т.п. В сфере бизнеса фирма по продаже недвижимости уже используют технологию мультимедиа для создания каталогов продаваемых домов - покупатель может увидеть на экране дом в разных ракурсах, совершить интерактивную видеопрогулку по всем помещениям, ознакомиться с планами и чертежами. Технологические мультимедиа пользуется большим вниманием военных: так, Пентагон реализует программу перенесения на интерактивные видеодиски всей технической, эксплуатационной и учебной документации по всем системам вооружений, создания и массового использования тренажеров на основе таких дисков.

Еще одна быстро развивающаяся, совершенно уже фантастическая для нас область применения компьютеров, в которой важную роль играет технология мультимедиа - это системы виртуальной, или альтернативной реальности, а также близкие к ним системы "телеприсутствия".

Первый блок, это устройства вывода, то есть те устройства, которые отвечают за вывод информации. Информация может выводиться на экран, на лист бумаги и так далее. В других разделах подробно рассказано о каждом устройстве.

Например, монитор является устройством вывода, так как отвечает за вывод информации на экран.

Устройство ПК

Материнская (системная) плата – важнейший элемент ПК, к которому подключено все то, что составляет сам компьютер. Она служит для объединения и организации взаимодействия других компонентов. По сути, выбор конфигурации компьютера начинается именно с выбора системной платы. В нее устанавливается процессор, оперативная память, с ней связаны жесткий диск и CD-ROM, к ней через соответствующие различным интерфейсам разъемы и порты подключаются различные дополнительные устройства. Таким образом, материнская плата, центральный процессор, оперативная память составляют основу ПК, от их производительности в большой степени зависит производительность компьютера в целом. Материнские платы различаются по типу процессоров, которые могут быть установлены на них, и названия фирм, их выпускающих. На материнских платах находятся специальные перемычки – джамперы, позволяющие подстроить ее под тип процессора и других устройств, устанавливаемых на ней.

Компьютер должен быть готов к добавлению в систему стандартных дополнительных устройств, используя стандартные способы их подключения. Все узлы компьютера взаимосвязаны физически и логически. На материнской плате устанавливаются разъемы для установки дополнительных устройств – слоты расширения.

Все дополнительные устройства взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных – шину. Виды слотов расширения различаются по типу шины. Данные могут передаваться между внешними устройствами и процессором, оперативной памятью и процессором, внешними устройствами и оперативной памятью или между устройствами ввода-вывода. Шина характеризуется типом, разрядностью, частотой и количеством подключаемых внешних устройств. При работе с оперативной памятью шина проводит поиск нужного участка памяти и обменивается информацией с найденным участком. Эти задачи выполняют две части системной шины: адресная шина и шина данных.

Микропроцессор может обрабатывать данные любой природы: текст, числа, графика, звук и др. Это возможно потому, что данные перед использованием на компьютере преобразовываются к простейшему виду, представляются в двоичном коде, “оцифровываются”. Физически это может выглядеть как чередование намагниченных и размагниченных участков жесткого диска, отражающих и не отражающих луч участков компакт-диска, передаваемых сигналов напряжения высокого и низкого уровня и т.д.

Разрядность – количество двоичных разрядов, которые процессор обрабатывает за один такт. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита.

Структура пк: виды памяти компьютера, назначение, основные параметры. Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных.

Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к про Внешняя память. Устройства внешней памяти весьма разнообразны. Предлагаемая классификация учитывает тип носителя, т.е. материального объекта, способного хранить информацию.

(1) Накопители на магнитной ленте исторически появились раньше, чем накопители на магнитном диске. Бобинные накопители используются в суперЭВМ и mainframe. Ленточные накопители называются стримерами, они предназначены для создания резервных копий программ и документов, представляющих ценность. Запись может производиться на обычную видеокассету или на специальную кассету. Емкость такой кассеты до 1700 Мб, длина ленты 120 м, ширина 3.81 мм (2 - 4 дорожки). Скорость считывания информации-до 100 Кб/сек.

(2) Диски относятся к носителям информации с прямым доступом, т.е. ПК может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно.

Магнитные диски (МД)- в качестве запоминающей среды используются магнитные материалы со специальными свойствами, позволяющими фиксировать два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры - 0 и 1. Информация на МД записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек. Каждая дорожка разбита на сектора (1 сектор = 512 б). Обмен между дисками и ОП происходит целым числом секторов. Кластер - минимальная единица размещения информации на диске, он может содержать один и более смежных секторов дорожки. При записи и чтении МД вращается вокруг своей оси, а механизм управления магнитной головкой подводит ее к выбранной для записи или чтения дорожке.

Данные на дисках хранятся в файлах - именованных областях внешней памяти, выделенных для хранения массива данных. Кластеры, выделяемые файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Вся информация о том, где именно записаны кусочки файла, хранится в таблице размещения файлов FAT (file allocation table). Для пакетов МД (это диски, установленные на одной оси) и для двусторонних дисков вводится понятие цилиндр - совокупность дорожек МД, находящихся на одинаковом расстоянии от центра.

На ГМД магнитный слой наносится на гибкую основу. Диаметр ГМД: 5,25" и 3,5". Емкость ГМД от 180 Кб до 2,88 Мб. Число дорожек на одной поверхности - 80. Скорость вращения от 3000 до 7200 об/мин. Среднее время доступа 65 - 100 мс.

Каждая новая дискета перед работой должна быть отформатирована, т.е. создана структура записи информации на ее поверхности: разметка дорожек, секторов, записи маркеров, таблицы FAT. Дискеты нужно хранить аккуратно, беречь от пыли, механических повреждений, воздействия магнитных полей, растворителей. Это основной недостаток этого вида накопителей.

НЖМД или «винчестеры» изготовлены из сплавов алюминия или из керамики и покрыты ферролаком, вместе с блоком магнитных головок помещены в герметически закрытый корпус. Емкость накопителей за счет чрезвычайно плотной записи достигает нескольких гигабайт, быстродействие также выше, чем у съемных дисков (за счет увеличения скорости вращения, т.к. диск жестко закреплен на оси вращения). Первая модель появилась на фирме IBM в 1973 г. Она имела емкость 16 Кб и 30 дорожек/30 секторов, что случайно совпало с калибром популярного ружья 30"730" «винчестер».

Диаметр ЖМД: 3,5" (есть 1,8" и 5,25"). Скорость вращения 7200 об/мин, время доступа - 6 мс.

Понятие термина

Термин информатика (слияние Информация и Автоматика) возник в $60$-х годах во Франции для определения области человеческой деятельности, которая занимается автоматизированной обработкой информации с использованием электронных вычислительных машин (ЭВМ). В большинстве стран Западной Европы и США используется термин компьютерная наука (computer science), последнее время эти два понятия отождествляются.

С бурным развитием микропроцессорной техники информатика выделилась в самостоятельную область науки, которая занимается изучением свойств информации, процессами передачи и обработки информации.

Однозначного определения понятия информатики не существует, и связано это с многогранностью ее функций, возможностей, средств и методов. Приведем пример одного из них:

Определение 1

Информатика – это область человеческой деятельности, которая связана с процессами обработки информации с помощью средств вычислительной техники и взаимодействием этих средств со средой применения.

Предмет и задачи информатики

Рассматривая информатику в качестве фундаментальной науки, основным ее направлением является разработка методов и средств создания информационного обеспечения процессов управления любыми объектами на базе компьютерных информационных систем.

Одной из главных задач информатики является изучение информационных систем; места, которое они занимают; структуры, которую должны иметь; особенностей функционирования; их общих закономерностей.

Задачами информатики являются:

  • исследование информационных процессов любой природы;
  • разработка вычислительной техники и создание новой технологии обработки информации на основе полученных результатов исследования информационных процессов;
  • научные и инженерные разработки с целью создания, внедрения и обеспечения эффективного применения компьютерной техники и технологии во всех сферах человеческой жизнедеятельности.

Основная задача информатики заключается в систематизации приёмов и методов работы с программно-аппаратными средствами вычислительной техники.

Целью фундаментальных исследований информатики является систематизация знаний о всех возможных информационных системах, определение общих закономерностей построения этих систем и их функционирования.

Предмет информатики – разработка эффективных методов преобразования информации.

Составляющими предмета информатики являются понятия:

  • аппаратного обеспечения средств вычислительной техники;
  • программного обеспечения средств вычислительной техники;
  • средств взаимодействия аппаратного и программного обеспечения.

Главной функцией информатики является разработка методов и средств обработки информации и использование их в организации технологического процесса обработки информации.

В наше время информатика тесно переплетается с другими науками и охватывает практически все виды жизнедеятельности человека: производство, торговые операции, медицину, образование, криминалистику и т.д.

Рисунок 1. Место информатики в системе наук

Направления практических приложений информатики:

  1. Архитектура вычислительных систем.
  2. Интерфейсы вычислительных систем (аппаратные, программные и программно-аппаратные).
  3. Программирование.
  4. Преобразование структуры данных.
  5. Защита информации.
  6. Автоматизация.
  7. Стандартизация.

Рисунок 2. Структура информатики

Научная область, которая воплощает практическое применение информатики, основана на базе знаний следующих разделов:

    Теоретическая информатика – раздел информатики, который активно использует математический аппарат для описания различных информационных процессов . Опирается на математическую логику и содержит теорию алгоритмов и автоматов, теорию информации и теорию кодирования, теорию формальных языков и грамматик, исследование операций (операционное исчисление) и т.д.

    Вычислительная техника – раздел, в котором выполняется разработка общих принципов построения вычислительных систем. Раздел не изучает технические детали вычислительных систем, но принципиальные решения на уровне архитектуры, которые подразумевают описание состава, функциональных возможностей и принципов взаимодействия отдельных устройств.

    Программирование – раздел информатики, который занимается разработкой системного и прикладного программного обеспечения. С помощью программирования образуется связь между различными научными областями, которая позволяет моделировать и решать задачи из этих областей с помощью вычислительных систем (компьютеров).

    Информационные системы – составная часть информатики, отвечающая за анализ потоков информации, их оптимизацию, структурирование, принципы хранения и поиска информации. Значение информационных систем оценивается исследованиями в этой области, которые позволяют создавать новые операционные системы для ПК, была создана и успешно развивается глобальная сеть Интернет.

    Искусственный интеллект – раздел информатики, в котором решаются вопросы различных наук (например, психологии, лингвистики, математики и т. д.): моделирование рассуждений, генерация новых знаний, перевод с одного языка на другой с помощью программного обеспечения и др. Разработки в области искусственного интеллекта самым прямым образом влияют на создание интеллектуальных интерфейсных систем взаимодействия человека и компьютера, которые сведут это взаимодействие к более эффективному общению и оно станет более схожим на общение между людьми.

В англоязычных странах применяют термин computer science – компьютерная наука.

Теоретической основой информатики является группа фундаментальных наук таких как: теория информации, теория алгоритмов, математическая логика, теория формальных языков и грамматик, комбинаторный анализ и т.д. Кроме них информатика включает такие разделы, как архитектура ЭВМ, операционные системы, теория баз данных, технология программирования и многие другие. Важным в определении информатики как науки является то, что с одной стороны, она занимается изучением устройств и принципов действия средств вычислительной техники, а с другой – систематизацией приемов и методов работы с программами, управляющими этой техникой.

Информационная технология – это совокупность конкретных технических и программных средств, с помощью которых выполняются разнообразные операции по обработке информации во всех сферах нашей жизни и деятельности. Иногда информационную технологию называют компьютерной технологией или прикладной информатикой.

Информация аналоговая и цифровая.

Термин «информация» восходит к латинскому informatio, разъяснение, изложение, осведомленность.

Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.

В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.

Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло – это энергетические сигналы, а вкус и запах – это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков – это информация аналоговая. Если же разным цветам дать номера, а разным звукам – ноты, то аналоговую информацию можно превратить в цифровую.

Музыка, когда ее слушают, несет аналоговую информацию, но если записать ее нотами, она становится цифровой.

Разница между аналоговой информацией и цифровой, прежде всего, в том, что аналоговая информация непрерывна, а цифровая дискретна.

К цифровым устройствам относятся персональные компьютеры – они работают с информацией, представленной в цифровой форме, цифровыми являются и музыкальные проигрыватели лазерных компакт дисков.

Кодирование информации.

Кодирование информации – это процесс формирования определенного представления информации.

В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Например, чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме. С помощью компьютерных программ можно преобразовывать полученную информацию, например «наложить» друг на друга звуки от разных источников.

Аналогично на компьютере можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, а при выводе на внешние устройства (экран или печать) для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов.

Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Единицы измерения информации. Бит. Байт.

Бит – наименьшая единица представления информации. Байт – наименьшая единица обработки и передачи информации.

Решая различные задачи, человек использует информацию об окружающем нас мире. Часто приходится слышать, что сообщение несет мало информации или, наоборот, содержит исчерпывающую информацию,при этом разные люди, получившие одно и то же сообщение (например, прочитав статью в газете), по-разному оценивают количество информации, содержащейся в нем. Это означает, что знания людей об этих событиях (явлениях) до получения сообщения были различными. Количество информации в сообщении, таким образом, зависит от того, насколько ново это сообщение для получателя. Если в результате получения сообщения достигнута полная ясность в данном вопросе (т.е. неопределенность исчезнет), говорят, что получена исчерпывающая информация. Это означает, что нет необходимости в дополнительной информации на этутему. Напротив, если после получения сообщения неопределенность осталась прежней (сообщаемые сведения или уже были известны, или не относятся к делу), значит, информации получено не было (нулевая информация).

Подбрасывание монеты и слежение за ее падением дает определенную информацию. Обе стороны монеты «равноправны», поэтому одинаково вероятно, что выпадет как одна, так и другая сторона. В таких случаях говорят, что событие несет информацию в 1 бит. Если положить в мешок два шарика разного цвета, то, вытащив вслепую один шар, мы также получим информацию о цвете шара в 1 бит.

Единица измерения информации называется бит (bit) – сокращение от английских слов binary digit, что означает двоичная цифра.

В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено – не намагничено, есть отверстие – нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое – цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).

В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (2 8). Наряду с байтами для измерения количества информации используются более крупные единицы:

1 Кбайт (один килобайт) = 2\up1210 байт = 1024 байта;

1 Мбайт (один мегабайт) = 2\up1210 Кбайт = 1024 Кбайта;

1 Гбайт (один гигабайт) = 2\up1210 Мбайт = 1024 Мбайта.

Например, книга содержит 100 страниц; на каждой странице – 35 строк, в каждой строке – 50 символов. Объем информации, содержащийся в книге, рассчитывается следующим образом:

Страница содержит 35 × 50 = 1750 байт информации. Объем всей информации в книге (в разных единицах):

1750 × 100 = 175 000 байт.

175 000 / 1024 = 170,8984 Кбайт.

170,8984 / 1024 = 0,166893 Мбайт.

Файл. Форматы файлов.

Файл – наименьшая единица хранения информации, содержащая последовательность байтов и имеющая уникальное имя.

Основное назначение файлов – хранить информацию. Они предназначены также для передачи данных от программы к программе и от системы к системе. Другими словами, файл – это хранилище стабильных и мобильных данных. Но, файл – это нечто большее, чем просто хранилище данных. Обычно файл имеет имя, атрибуты, время модификации и время создания.

Файловая структура представляет собой систему хранения файлов на запоминающем устройстве, например, на диске. Файлы организованы в каталоги (иногда называемые директориями или папками). Любой каталог может содержать произвольное число подкаталогов, в каждом из которых могут храниться файлы и другие каталоги.

Способ, которым данные организованы в байты, называется форматом файла.

Для того чтобы прочесть файл, например, электронной таблицы, нужно знать, каким образом байты представляют числа (формулы, текст) в каждой ячейке; чтобы прочесть файл текстового редактора, надо знать, какие байты представляют символы, а какие шрифты или поля, а также другую информацию.

Программы могут хранить данные в файле способом, выбираемым программистом. Часто предполагается, однако, что файлы будут использоваться различными программами, поэтому многие прикладные программы поддерживают некоторые наиболее распространенные форматы, так что другие программы могут понять данные в файле. Компании по производству программного обеспечения (которые хотят, чтобы их программы стали «стандартами»), часто публикуют информацию о создаваемых ими форматах, чтобы их можно было бы использовать в других приложениях.

Все файлы условно можно разделить на две части – текстовые и двоичные.

Текстовые файлы – наиболее распространенный тип данных в компьютерном мире. Для хранения каждого символа чаще всего отводится один байт, а кодирование текстовых файлов выполняется с помощью специальных таблиц, в которых каждому символу соответствует определенное число, не превышающее 255. Файл, для кодировки которого используется только 127 первых чисел, называется ASCII - файлом (сокращение от American Standard Code for Information Intercange – американский стандартный код для обмена информацией), но в таком файле не могут быть представлены буквы, отличные от латиницы (в том числе и русские). Большинство национальных алфавитов можно закодировать с помощью восьмибитной таблицы. Для русского языка наиболее популярны на данный момент три кодировки: Koi8-R, Windows-1251 и, так называемая, альтернативная (alt) кодировка.

Такие языки, как китайский, содержат значительно больше 256 символов, поэтому для кодирования каждого из них используют несколько байтов. Для экономии места зачастую применяется следующий прием: некоторые символы кодируются с помощью одного байта, в то время как для других используются два или более байтов. Одной из попыток обобщения такого подхода является стандарт Unicode, в котором для кодирования символов используется диапазон чисел от нуля до 65 536. Такой широкий диапазон позволяет представлять в численном виде символы языка любого уголка планеты.

Но чисто текстовые файлы встречаются все реже. Документы часто содержат рисунки и диаграммы, используются различные шрифты. В результате появляются форматы, представляющие собой различные комбинации текстовых, графических и других форм данных.

Двоичные файлы, в отличие от текстовых, не так просто просмотреть, и в них, обычно, нет знакомых слов – лишь множество непонятных символов. Эти файлы не предназначены непосредственно для чтения человеком. Примерами двоичных файлов являются исполняемые программы и файлы с графическими изображениями.

Примеры двоичного кодирования информации.

Среди всего разнообразия информации, обрабатываемой на компьютере, значительную часть составляют числовая, текстовая, графическая и аудиоинформация. Познакомимся с некоторыми способами кодирования этих типов информации в ЭВМ.

Кодирование чисел.

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера области памяти, используемой для размещения чисел. В k -разрядной ячейке может храниться 2 k различных значений целых чисел.

Чтобы получить внутреннее представление целого положительного числа N , хранящегося в k -разрядном машинном слове, нужно:

1) перевести число N в двоичную систему счисления;

2) полученный результат дополнить слева незначащими нулями до k разрядов.

Например, для получения внутреннего представления целого числа 1607 в 2-х байтовой ячейке число переводится в двоичную систему: 1607 10 = 11001000111 2 . Внутреннее представление этого числа в ячейке имеет вид: 0000 0110 0100 0111.

Для записи внутреннего представления целого отрицательного числа (–N) нужно:

1) получить внутреннее представление положительного числа N ;

2) получить обратный код этого числа, заменяя 0 на 1 и 1 на 0;

3) полученному числу прибавить 1 к полученному числу.

Внутреннее представление целого отрицательного числа –1607. С использованием результата предыдущего примера и записывается внутреннее представление положительного числа 1607: 0000 0110 0100 0111. Обратный код получается инвертированием: 1111 1001 1011 1000. Добавляется единица: 1111 1001 1011 1001 – это и есть внутреннее двоичное представление числа –1607.

Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p , которую называют порядком: R = m * n p .

Представление числа в форме с плавающей точкой неоднозначно. Например, справедливы следующие равенства:

12,345 = 0,0012345 × 10 4 = 1234,5 × 10 -2 = 0,12345 × 10 2

Чаще всего в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в таком представлении должна удовлетворять условию:

0,1 p Ј m p . Иначе говоря, мантисса меньше 1 и первая значащая цифра – не ноль (p – основание системы счисления).

В памяти компьютера мантисса представляется как целое число, содержащее только значащие цифры (0 целых и запятая не хранятся), так для числа 12,345 в ячейке памяти, отведенной для хранения мантиссы, будет сохранено число 12 345. Для однозначного восстановления исходного числа остается сохранить только его порядок, в данном примере – это 2.

Кодирование текста.

Множество символов, используемых при записи текста, называется алфавитом. Количество символов в алфавите называется его мощностью.

Для представления текстовой информации в компьютере чаще всего используется алфавит мощностью 256 символов. Один символ из такого алфавита несет 8 бит информации, т. к. 2 8 = 256. Но 8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ.

Все символы такого алфавита пронумерованы от 0 до 255, а каждому номеру соответствует 8-разрядный двоичный код от 00000000 до 11111111. Этот код является порядковым номером символа в двоичной системе счисления.

Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице. Международным стандартом на персональных компьютерах является уже упоминавшаяся таблица кодировки ASCII.

Принцип последовательного кодирования алфавита заключается в том, что в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений.

Стандартными в этой таблице являются только первые 128 символов, т. е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов.

Кодирование графической информации.

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселами (pixel, от англ. picture element). Код пиксела содержит информации о его цвете.

Для черно-белого изображения (без полутонов) пиксел может принимать только два значения: белый и черный (светится – не светится), а для его кодирования достаточно одного бита памяти: 1 – белый, 0 – черный.

Пиксел на цветном дисплее может иметь различную окраску, поэтому одного бита на пиксел недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксел, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 – черный, 10 – зеленый, 01 – красный, 11 – коричневый.

На RGB-мониторах все разнообразие цветов получается сочетанием базовых цветов – красного (Red), зеленого (Green), синего (Blue), из которых можно получить 8 основных комбинаций:

Разумеется, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, порождающих разнообразные оттенки, увеличивается. Количество различных цветов – К и количество битов для их кодировки – N связаны между собой простой формулой: 2 N = К .

В противоположность растровой графике векторное изображение многослойно. Каждый элемент векторного изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пикселы которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука.

Из физики известно, что звук – это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), то видно плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой – аналоговый – сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Делается это, например, так – измеряется напряжение через равные промежутки времени и полученные значения записываются в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его – аналого-цифровым преобразователем (АЦП).

Чтобы воспроизвести закодированный таким образом звук, нужно сделать обратное преобразование (для этого служит цифро-аналоговый преобразователь – ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук, но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется довольно компактный способ представления музыки – нотная запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие, чисто компьютерные, форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18–20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает, примерно, 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Компьютер – универсальная информационная машина.

Одно из основных назначений компьютера – обработка и хранение информации. С появлением ЭВМ стало возможным оперировать немыслимыми ранее объемами информации. В электронную форму переводят библиотеки, содержащие научную и художественную литературы. Старые фото- и кино-архивы обретают новую жизнь в цифровой форме.

Анна Чугайнова

Слово «информация» происходит от латинского слова informatio , что означает разъяснение, высказывания, осведомленность. Само слово информация лишь сравнительно недавно стало превращаться в точный термин. До этого информацию воспринимали как то, что присутствует в языке, письме или передается при общении. Сейчас смысл, который вкладывается в это понятие, очень изменился и расширился. Возникла особая математическая дисциплина — теория информации.

Хотя в теории информации и вводится несколько ее конкретных определений, все они не охватывают всего объема этого понятия. Рассмотрим некоторые определения.

Информация — это отражение реального (материального, предметного) мира, которое выражается в виде сигналов, знаков.

Информация — любая совокупность сигналов, сведений (данных), которые какая-либо система воспринимает из окружающей среды (входная информация), выдает в окружающую среду (исходящая информация) или сохраняется внутри определенной системы (внутренняя информация).

Информация существует в виде документов, рисунков, текстов, звуковых и световых сигналов, энергетических и нервных импульсов и т.п.

Под информацией понимают сведения об объектах окружающего мира, которые воспринимаются человеком, животным, растительным миром или специальными устройствами и повышают их уровень информированности.

Информация передается с помощью сообщений. Сообщение бывают устными, письменными, в виде рисунков, жестов, специальных знаков или организованными каким-то другим образом. Примерами сообщений являются: показания измерительного устройства, дорожные знаки, текст телеграммы, устный рассказ и тому подобное.

Виды информации

Информацию можно разделить на виды по нескольким признакам:

По способу восприятия

Для человека информация делится на виды в зависимости от типа рецепторов, воспринимающих ее:

  • Визуальная — воспринимается органами зрения.
  • Аудиальная — воспринимается органами слуха.
  • Тактильная — воспринимается тактильными рецепторами.
  • Обонятельная — воспринимается обонятельными рецепторами.
  • Вкусовая — воспринимается вкусовыми рецепторами.

По форме представления

По форме представления информация делится на следующие виды:

  • Текстовая — что передается в виде символов, предназначенных обозначать лексемы языка.
  • Числовая — в виде цифр и знаков, обозначающих математические действия.
  • Графическая — в виде изображений, событий, предметов, графиков.
  • Звуковая — устная или в виде записи передача лексем языка аудиальным путем.

По назначению

  • Массовая — содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.
  • Специальная — содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.
  • Личная — набор сведений о какой-либо личности, которые определяют социальное положение и типы социальных взаимодействий внутри популяции.

Свойства информации

Полезность. Полезность информации оценивается по тем задачам, которые можно решить с ее использованием. Сведения, важные и полезные для одного человека, оказываются бесполезными для другого, если он не может их использовать.

Актуальность. Информация актуальна (своевременна), если она важна в данный момент времени. Если вы собираетесь ехать поездом, то для вас важна информация о том, когда этот поезд отправляется. Однако эта информация теряет свою актуальность после того, как поезд тронулся.

Вероятность (правдивость) . Информация считается достоверной, если она не противоречит реальной действительности, правильно ее объясняет и подтверждается. Если вы узнали о наводнении из информационной телепрограммы, то эта информация, по всей вероятности, является достоверной. В то же время слухи о пришествии инопланетян, которое ожидается на следующей неделе, недостоверны.

Объективность. Информация может быть объективной или субъективной (зависеть или не зависеть от чьего суждения). Например, сообщение «вода в море холодная» является субъективным, одновременно сообщение «температура +17 градусов Цельсия» дает объективную информацию.

Полнота. Информация полная, если ее достаточно для правильных выводов и принятия правильных решений. Если человеку на основе какой-либо информации приходится что-то решать, то он сначала оценивает, достаточно этой информации для принятия правильного решения.

Понятность. Информация понятна, если при ее восприятии нет необходимости в дополнительных сообщениях (не возникает вопросов). Если человеку говорят что-то, к восприятию чего он еще не подготовлен, например обращаются английском раньше, чем человек выучил этот язык, то он из услышанной информации вынесет совсем другую информацию, чем это было бы тогда, когда человек выучил английский язык.

Носители информации

Среда, в которой зафиксировано сообщение, называют носителем сообщения. В «докомпьютерную» эру информацию хранили на бумаге, фотографиях, кинопленке, магнитной ленте и др. С появлением первых компьютеров нашли широкое применение перфокарты и перфоленты, магнитные диски, компакт-диски.

Перфокарта — это лист тонкого картона стандартных размеров. В определенных позициях перфокарты пробивают дырочки. Наличие дырочки в определенной позиции считают единицу, а ее отсутствие — ноль.

Перфолента — это лента плотной бумаги стандартной ширины, на которую заносится информация пробивкой дырочек в соответствующих позициях на 5-ти или 8-ми параллельных дорожках.

Конечно, за дырочками, нанесенными на перфокарты или перфоленты, стоит вполне определенная информация.

Магнитные ленты и магнитные диски для хранения информации начали использовать с развитием вычислительной техники. Для записи 1 (единицы) намагничивалась небольшая область. Размагниченная (или намагниченная противоположно) область означала 0 (ноль).

Гибкие магнитные диски, или ГМД (FDD), позволяли легко переносить информацию с одного компьютера на другой, а также сохранять информацию, которая не используется на компьютере постоянно. Выпускались дискеты, как правило, с диском диаметром 3,5 дюйма и имели емкость всего 1,44 Мбайта.

Жесткие магнитные диски, или винчестеры (HDD), и сегодня являются основным типом носителей для долговременного хранения информации. Накопитель включает собственно магнитный диск, систему позиционирования и комплект магнитных головок — все это размещено в герметично закрытом корпусе.

Магнитные карточки содержат закодированную информацию, эта технология используется в кредитных, телефонных и регистрационных карточках, а также пропусках и «ключах» для кодовых замков.

Компакт-диски (оптические диски или CD) — это диск из специальной пластмассы с зеркальным покрытием с той стороны, с которой записывается и считывается информация. Информация на диск записывается так: диск вращается, и на его поверхности лазером в определенных местах наносятся «повреждение» поверхности таким образом, чтобы от них не отражался луч лазера при считывании. Таким образом записывается 1, «неповрежденные» места означают логический 0.

Существуют CD-R, DVD-R — оптические диски, на которые можно осуществлять однократную запись, а также CD-RW, DVD-RW — оптические диски, на которые можно осуществлять многократную запись.

Формы и способы представления информации

Символьная форма представления информации является наиболее простой, в ней каждый символ имеет какое-то значение. Например: красный свет светофора, показатели поворота на транспортных средствах, различные жесты, сокращения и обозначения в формулах.

Текстовая форма представления информации является более сложной. Эта форма предусматривает, что содержание сообщения передается не через отдельные символы (цифры, буквы, знаки), а их сочетанием, порядком размещения. Последовательно расположены символы образуют слова, которые в свою очередь могут образовывать предложения. Текстовая информация используется в книгах, брошюрах, газетах, журналах и т.

Графическая форма представления информации, как правило, имеет наибольший объем. К этой форме относятся фотографии, картины, чертежи, графики и тому подобное. Графическая форма более информативна. Видимо, поэтому, когда берем в руки новую книгу, то первым делом ищем в ней рисунки, чтобы создать о ней наиболее полное впечатление.

Информацию можно подавать одним из способов: буквами и знаками, жестами, нотами музыки, рисунками, картинами, скульптурами, звукозаписью, видеозаписью, кинофильмами и тому подобное.

Информация может быть в виде непрерывных (аналоговых) и дискретных (цифровых) сигналов.

Информация в аналоговом виде меняет свое значение постепенно (показатели термометра, часов со стрелками, спидометра и т.д.).

Информация в дискретном виде меняет свое значение с определенным шагом (показатели электронных часов, весы с гирями, подсчет количества предметов и т.п.).

Информатика

Термин информатика происходит от двух слов: информация и автоматика. Значит информатика это «наука о преобразовании информации».

Этот термин впервые введен в обиход во Франции в середине 60-х годов XX в., когда началось широкое использование вычислительной техники. Тогда в англоязычных странах вошел в употребление термин «Computer Science» для обозначения науки о преобразовании информации, которая базируется на вычислительной технике. Теперь эти термины являются синонимами.

Основа информатики — информационные технологии — совокупность средств и методов, с помощью которых осуществляется во всех сферах жизни и деятельности человека.

Информационная система взаимосвязанная совокупность средств, методов и персонала, используемая для хранения, обработки и выдачи информации с целью достижения конкретной задачи.

Современное понимание информационной системы (ИС) предусматривает использование компьютера в качестве основного технического средства обработка информации. Как правило, это компьютеры, оснащенные специализированными программными средствами.

В работе ИС, в ее технологическом процессе можно выделить следующие этапы:

  1. Зарождение данных — формирование первичных сообщений фиксируют результаты определенных операций, свойства объектов и субъектов управления, параметры процессов, содержание нормативных и юридических актов и т.п.
  2. Накопление и систематизация данных — организация такого их размещения, которое обеспечивало бы быстрый поиск и отбор нужных сведений, защита их от искажений, потери, деформирование целостности и др.
  3. Обработка данных — процессы, в результате которых на основании ранее накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные. Производные данные также могут проходить дальнейшую обработку, давая сведения обобщенности и др.
  4. Отображение данных — представление их в форме, пригодной для восприятия человеком. Прежде всего — это вывод на печать, то есть изготовление документов, удобных для восприятия человеком. Широко используют построение графических иллюстративных материалов (графиков, диаграмм) и формирование звуковых сигналов.

Сообщения, которые формируются на первом этапе, могут быть обычным бумажным документом, сообщением «в электронном виде» или тем и другим одновременно. В современных информационных системах сообщение по большей части имеют «электронный вид». Основные составляющие информационных процессов:

  • сбор данных: накопление данных с целью достаточной полноты для принятия решений;
  • сохранения;
  • передача;
  • обработка.

Одним из важнейших условий применения электронно — вычислительных машин (ЭВМ) для решения тех или иных задач является построение соответствующего алгоритма (программы), содержащий информацию о правилах получения результирующей (итоговой) информации из заданной (входной) информации.

Программирование — дисциплина, исследующая методы формулировки и решения задач с помощью ЭВМ, и является основной составной частью информатики.

Итак, информация, ЭВМ, алгоритм — три фундаментальных понятия информатики.

Информатика — комплексная научная и инженерная дисциплина, изучающая все аспекты проектирования, создания, оценки, функционирования компьютерных систем обработки информации, ее применение и влияние на различные области социальной практики.

Родоначальниками информатики является науки: документалистика и кибернетика. Кибернетика — переводится, как «искусный в управлении».

В информатике выделяют три основных части:

  • алгоритмы обработки информации (algorithm )
  • вычислительную технику (hardware )
  • компьютерные программы (software ).

Предмет информатики составляют понятия:

  • аппаратное обеспечение средств вычислительной техники
  • программное обеспечение средств вычислительной техники;
  • средства взаимодействия аппаратного и программного обеспечения;
  • средства взаимодействия человека и аппаратного и программного обеспечения.

Методы и средства взаимодействия человека с аппаратными и программными средствами называется интерфейсом .

Двоичное кодирование информации

В разговорной речи часто встречаются такие выражения, как передача информации, сжатие информации, обработка информации. В таких случаях всегда идет об определенном сообщении, которое закодировано и передано тем или иным способом.

В вычислительной технике наиболее часто применяется двоичная форма представления информации , основанной на представленные данных последовательностью двух знаков: 0 и 1

Эти знаки называются двоичными цифрами, по — английски — binary digit , или, сокращенно bit (бит) .

Также используется восьмеричная форма представления информации (основана на представленные последовательности цифр 0, 1, …, 7) и шестнадцатеричная форма представления информации (основана на представленные последовательностью 0, 1, …, 9, A, B, C, …, F).

Информационным объемом сообщение называется количество битов в этом сообщении. Подсчет информационного объема сообщение является чисто техническим заданием, так как при таком подсчете содержание сообщения не играет никакой роли.

В современной вычислительной технике биты принято объединять в восьмерки, которые называются байтами: 1 байт = 8 бит. Наряду с битами и байтами используют и большие единицы измерения информации.

  • 1 bit binary digit {0,1};
  • 1 байт = 8 бит;
  • 1 Кбайт = 2 10 байт = 1024 байт;
  • 1 Мбайт = 2 10 Кбайт = 1024 Кбайт = 2 20 байт;
  • 1 Гбайт = 2 10 Мбайт = 1024 Мбайт = 2 30 байт;
  • 1 Тбайт = 2 10 Гбайт = 1024 Гбайт = 2 40 байт.
  • 1 Пбайт = 2 10 Тбайт = 1024 Тбайт = 2 50 байт.

С помощью двух бит кодируются четыре различных значения: 00, 01, 10, 11. Тремя битами можно закодировать 8 состояний:

  • 000 001 010 011 100 101 110 111

Вообще с помощью n бит можно закодировать 2 n состояний.

Скорость передачи информации измеряется количеством битов, передаваемых за одну секунду. Скорость передачи бит за одну секунду называется 1 Бодом. Производные единицы скорости передачи называются Кбод, Мбод и Гбод:

  • 1 Кбод (один килобод) = 2 10 бод = 1024 бит / с;
  • 1 Мбод (один мегабод) = 2 20 бод = 1024 Кбод;
  • 1 Гбод (один гигабод) = 2 30 бод = 1024 Мбод.

Пример . Пусть модем передает информацию со скоростью 2400 бод. Для передачи одного символа текста нужно передать около 10 битов. Таким образом, модем способен за 1 секунду передать около 2400/10 = 240 символов.

На ЭВМ можно обрабатывать не только числа, но и тексты. При этом нужно закодировать около 200 различных символов. В двоичном коде для этого нужно не менее 8 разрядов (2 8 = 256). Этого достаточно для кодирования всех символов английского и русского алфавитов (строчные и прописные), знаков препинания, символов арифметических действий некоторых общепринятых спецсимволов.

В настоящее время существует несколько систем кодирования.

Наиболее распространенными являются следующие системы кодирования: ASCII, Windows-1251, KOИ8, ISO.

ASCII (American Standard Code for Information Interchange — стандартный код информационного обмена)

В системе ASCII закреплены 2 таблицы кодирования: базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, расширенная от 128 до 255.

В первых 32 кодах (0-31) размещаются так называемые управляющие коды, которым не соответствуют никакие символы языков, и, соответственно коды не выводятся ни на экран, ни на устройстве печати.

Начиная с кода 32 по код 127 размещены коды символов английского алфавита.

Символы национального алфавита размещены в кодах от 128 до 255.

Кодирования Windows-1251 стала стандартом в российском секторе Wold Wide Web .

KOИ8 (код обмена информацией) является стандартным кодированием в сообщениях электронной почты и телеконференций.

ISO (International Standard Organization ) — международный стандарт. Это кодирования используется редко.

Появление информатики обусловлено возникновением и распространением новой технологии сбора, обработки и передачи информации, связанной с фиксацией данных на машинных носителях. Основной инструмент информатики — компьютер.

Компьютер, получивший свое название от первоначального назначения — выполнения вычислений, имеет второе очень важное применение. Он стал незаменимым помощником человека в его интеллектуальной деятельности и основным техническим средством информационных технологий. А быстрое развитие в последние годы технических и программных возможностей персональных компьютеров, распространение новых видов информационных технологий создают реальные возможности их использования, открывая перед пользователем качественно новые пути дальнейшего развития и адаптации к потребностям общества.

Дезинформация

Дезинформация - заведомо неверная, ложная информация, предоставляемая оппоненту или противнику для более эффективного ведения военных действий, получения каких либо конкурентных преимуществ, для проверки на утечку информации и выявления источника утечки, определения потенциально ненадежных клиентов или партнеров. Также дезинформацией называется сам процесс манипулирования информацией, как то: введение кого-либо в заблуждение путём предоставления неполной информации или полной, но уже не актуальной информации, искажения контекста, искажения какой либо части информации.

Дезинформация, как мы видим, - это результат деятельности человека, желание создать ложное впечатление и, соответственно подтолкнуть к требуемым действиям и/или бездействию.