Кот ученый - Образовательный портал

Константа скорости хим реакции не зависит от. Методы определения порядка реакции и константы скорости. Закон действующих масс. Порядок и константа скорости реакции

Элементарный акт химической реакции осуществляется в момент столкновения реагирующих частиц. Увеличение кон­центрации реагентов соответствует увеличению числа частиц в объеме, что приводит к более частым их столкновениям, а сле­довательно, к увеличению скорости реакции. Количественная за­висимость скорости реакции от концентрации выражается ос­новным постулатом химической кинетики, называемым законом действующих масс.

Скорость простой гомогенной реакции при постоянной температуре пропорциональна произведению концентра­ций реагирующих веществ, возведенных в степени, чис­ленно равные их стехиометрическим коэффициентам.

где а и b - стехиометрические коэффициенты реагентов; с(А) и с(В) -молярные концентрации реагентов; k - константа скорости реакции.

Это выражение для скорости реакции является кинетиче­ским уравнением только для простой реакции.

Константа скорости реакции является индивидуальной ха­рактеристикой реакции. Значение константы скорости реакции зависит от природы реагирующих веществ, температуры систе­мы и наличия в ней катализатора. Значение k для данных ус­ловий реакции не зависит от концентрации реагентов, и поэто­му константа скорости остается неизменной в течение реакции и является ее фундаментальным кинетическим параметром.

Значение константы скорости реакции численно равно скорости реакции при концентрациях реагентов, равных 1 моль/л.

Определить константу скорости реакции можно только экс­периментальным путем, изучая кинетику этой реакции и со­ставляя ее кинетическое уравнение по полученным данным.

Кинетическое уравнение каждой реакции определяют экспе­риментально, так как его нельзя предсказать по виду химическо­го уравнения реакции. Поэтому вначале при постоянной темпе­ратуре экспериментально устанавливают зависимость скорости реакции от концентрации каждого реагента в отдельности, при этом концентрации всех других реагентов должны оставаться постоянными, что обеспечивается обычно большим их избытком в реакционной среде. Для определения концентрации интере­сующего реагента в любой момент времени используют методы: титрования (разд. 8.3.2), потенциометрии (разд. 25.6), кондуктометрии (разд. 24.5), хроматографии (разд. 26.7) или другие, вы­бирая из них такой, чтобы значение измеряемой с помощью этого метода характеристики четко зависело от концентрации данно­го реагента. По полученным экспериментальным данным состав­ляют кинетическое уравнение для изучаемой реакции:

где n А и n b - порядок реакции по реагентам А и В соответственно.

Порядок реакции по реагенту равен показателю сте­пени, в которую надо возвести концентрацию данного реагента в кинетическом уравнении сложной реакции, чтобы вычисленная по этому уравнению скорость была равна скорости, найденной экспериментально.

Таким образом, порядок реакции по реагенту является для дан­ной реакции кинетическим параметром, наряду с константой скорости.

Порядок реакции по реагенту не зависит от стехиометриче-ских коэффициентов в уравнении реакции, а определяется ее механизмом. Если значения порядка реакции по каждому реа­генту совпадают со стехиометрическими коэффициентами в хи­мическом уравнении реакции, то это обычно означает, что изу­чаемая реакция - простая.

Несоответствие между порядком реакции по реагенту и его стехиометрическим коэффициентом в уравнении реакции сви­детельствует о сложности и многостадийности данной реакции. Представление о механизме такой реакции можно составить, ес­ли предположить, что ее скорость в основном определяется ско­ростью наиболее медленной, т. е. лимитирующей, стадии. В этом случае кинетическое уравнение, полученное по эксперименталь­ным данным, прежде всего отражает протекание именно лими­тирующей стадии, а не всего процесса.

Рассмотрим реакцию термического распада оксида азота(V):

Однако экспериментальные данные показывают, что скорость этой реакции пропорциональна не второй, а первой степени кон­центрации оксида азота(V), и в действительности ее кинетиче­ское уравнение имеет вид:

Это позволяет предположить следующий механизм реакции, включающий две стадии, резко отличающиеся по скорости про­текания:


Только в случае, если скорость I стадии несравненно мень­ше, чем второй, будет наблюдаться полное согласие с получен­ными экспериментально кинетическими данными, отраженны­ми в кинетическом уравнении, где порядок реакции по N2O5 равен 1.

Рис. 5.2. Определение порядка реакции n А по компоненту А

Для экспериментального определения значений константы скорости реакции (k) и порядка реакции по реагенту А (n А) необходимо исследовать зависимость скорости этой реакции от кон­центрации реагента А при ус­ловии, что концентрации дру­гих реагентов в реакционной смеси будут настолько больши­ми, что практически не будут изменяться в ходе данного экс­перимента. Тогда кинетическое уравнение изучаемой реакции будет иметь вид:

После логарифмирования этого выражения получим уравнение

которое при графическом выражении имеет вид прямой линии, тангенс угла наклона которой к оси lg с(А) равен порядку ре­акции п А (рис. 5.2). Отрезок, отсекаемый этой прямой на оси lg у, когда lg с(А) = 0, дает значение lg k. Следовательно, при подобной обработке экспериментальных данных можно опреде­лить значения важнейших кинетических параметров реакции -порядка реакции по реагенту и константы скорости данной ре­акции.

Кинетические кривые изменения концентрации реагентов для двух последовательно протекающих реакций, когда констан­ты скорости реакций k1 и k2 не сильно отличаются друг от друга, имеют сложный вид (рис. 5.3). Кинетическая кривая А соответст­вует монотонному убыванию концентрации исходного вещества А.

Концентрация промежуточно­го вещества В проходит через максимум, так как вначале оно накапливается, а потом исчеза­ет. Высота этого максимума Сl;(В) и время его достижения (тl,) могут быть самыми разны­ми в зависимости от соотно­шения значений констант k1 и k 2 . Кривая D характеризует на­копление продукта реакции D.


Рис. 5.3. Кинетические кривые изменения концентраций компо­нентов А, В и D для указанного превращения

Точный анализ кинетики подобных сложных реакций требует решения системы дифференциальных уравнений.

1. Основные понятия и постулаты химической кинетики

Химическая кинетика - раздел физической химии, изучающий скорости химических реакций. Основные задачи химической кинетики: 1) расчет скоростей реакций и определение кинетических кривых, т.е. зависимости концентраций реагирующих веществ от времени (прямая задача ); 2) определение механизмов реакций по кинетическим кривым (обратная задача ).

Скорость химической реакции описывает изменение концентраций реагирующих веществ в единицу времени. Для реакции

a A + b B + ...d D + e E + ...

скорость реакции определяется следующим образом:

где квадратные скобки обозначают концентрацию вещества (обычно измеряется в моль/л), t - время; a , b , d , e - стехиометрические коэффициенты в уравнении реакции.

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры и наличия катализатора. Зависимость скорости реакции от концентрации описывается основным постулатом химической кинетики - законом действующих масс :

Скорость химической реакции в каждый момент времени пропорциональна текущим концентрациям реагирующих веществ, возведенным в некоторые степени:

,

где k - константа скорости (не зависящая от концентрации); x , y - некоторые числа, которые называют порядком реакции по веществам A и B, соответственно. Эти числа в общем случае никак не связаны с коэффициентами a и b в уравнении реакции. Сумма показателей степеней x + y называется общим порядком реакции . Порядок реакции может быть положительным или отрицательным, целым или дробным.

Большинство химических реакций состоит из нескольких стадий, называемых элементарными реакциями . Под элементарной реакцией обычно понимают единичный акт образования или разрыва химической связи, протекающий через образование переходного комплекса. Число частиц, участвующих в элементарной реакции, называют молекулярностью реакции. Элементарные реакции бывают только трех типов: мономолекулярные (A B + ...), бимолекулярные (A + B D + ...) и тримолекулярные (2A + B D + ...). Для элементарных реакций общий порядок равен молекулярности, а порядки по веществам равны коэффициентам в уравнении реакции.

ПРИМЕРЫ

Пример 1-1. Скорость образования NO в реакции 2NOBr (г) 2NO (г) + Br 2(г) равна 1.6 . 10 -4 моль/(л. с). Чему равна скорость реакции и скорость расходования NOBr?

Решение . По определению, скорость реакции равна:

Моль/(л. с).

Из этого же определения следует, что скорость расходования NOBr равна скорости образования NO с обратным знаком:

моль/(л. с).

Пример 1-2. В реакции 2-го порядка A + B D начальные концентрации веществ A и B равны, соответственно, 2.0 моль/л и 3.0 моль/л. Скорость реакции равна 1.2 . 10 -3 моль/(л. с) при [A] = 1.5 моль/л. Рассчитайте константу скорости и скорость реакции при [B] = 1.5 моль/л.

Решение . По закону действующих масс, в любой момент времени скорость реакции равна:

.

К моменту времени, когда [A] = 1.5 моль/л, прореагировало по 0.5 моль/л веществ A и B, поэтому [B] = 3 – 0.5 = 2.5 моль/л. Константа скорости равна:

Л/(моль. с).

К моменту времени, когда [B] = 1.5 моль/л, прореагировало по 1.5 моль/л веществ A и B, поэтому [A] = 2 – 1.5 = 0.5 моль/л. Скорость реакции равна:

Моль/(л. с).

ЗАДАЧИ

1-1. Как выражается скорость реакции синтеза аммиака 1/2 N 2 + 3/2 H 2 = NH 3 через концентрации азота и водорода? (ответ)

1-2. Как изменится скорость реакции синтеза аммиака 1/2 N 2 + 3/2 H 2 = NH 3 , если уравнение реакции записать в виде N 2 + 3H 2 = 2NH 3 ? (ответ)

1-3. Чему равен порядок элементарных реакций: а) Сl + H 2 = HCl + H; б) 2NO + Cl 2 = 2NOCl? (ответ)

1-4. Какие из перечисленных величин могут принимать а) отрицательные; б) дробные значения: скорость реакции, порядок реакции, молекулярность реакции, константа скорости, стехиометрический коэффициент? (ответ)

1-5. Зависит ли скорость реакции от концентрации продуктов реакции? (ответ)

1-6. Во сколько раз увеличится скорость газофазной элементарной реакции A = 2D при увеличении давления в 3 раза?(ответ)

1-7. Определите порядок реакции, если константа скорости имеет размерность л 2 /(моль 2 . с). (ответ)

1-8. Константа скорости газовой реакции 2-го порядка при 25 о С равна 10 3 л/(моль. с). Чему равна эта константа, если кинетическое уравнение выражено через давление в атмосферах?(ответ)

1-9. Для газофазной реакции n -го порядка nA B выразите скорость образования B через суммарное давление.(ответ)

1-10. Константы скорости прямой и обратной реакции равны 2.2 и 3.8 л/(моль. с). По какому из перечисленных ниже механизмов могут протекать эти реакции: а) A + B = D; б) A + B = 2D; в) A = B + D; г) 2A = B.(ответ)

1-11. Реакция разложения 2HI H 2 + I 2 имеет 2-й порядок с константой скорости k = 5.95 . 10 -6 л/(моль. с). Вычислите скорость реакции при давлении 1 атм и температуре 600 К. (ответ)

1-12. Скорость реакции 2-го порядка A + B D равна 2.7 . 10 -7 моль/(л. с) при концентрациях веществ A и B, соответственно, 3.0 . 10 -3 моль/л и 2.0 моль/л. Рассчитайте константу скорости.(ответ)

1-13. В реакции 2-го порядка A + B 2D начальные концентрации веществ A и B равны по 1.5 моль/л. Скорость реакции равна 2.0 . 10 -4 моль/(л. с) при [A] = 1.0 моль/л. Рассчитайте константу скорости и скорость реакции при [B] = 0.2 моль/л. (ответ)

1-14. В реакции 2-го порядка A + B 2D начальные концентрации веществ A и B равны, соответственно, 0.5 и 2.5 моль/л. Во сколько раз скорость реакции при [A] = 0.1 моль/л меньше начальной скорости? (ответ)

1-15. Скорость газофазной реакции описывается уравнением w = k . [A] 2 . [B]. При каком соотношении между концентрациями А и В начальная скорость реакции будет максимальна при фиксированном суммарном давлении? (ответ)

2. Кинетика простых реакций

В данном разделе мы составим на основе закона действующих масс и решим кинетические уравнения для необратимых реакций целого порядка.

Реакции 0-го порядка. Скорость этих реакций не зависит от концентрации:

,

где [A] - концентрация исходного вещества. Нулевой порядок встречается в гетерогенных и фотохимических реакциях.

Реакции 1-го порядка. В реакциях типа A B скорость прямо пропорциональна концентрации:

.

При решении кинетических уравнений часто используют следующие обозначения: начальная концентрация [A] 0 = a , текущая концентрация [A] = a - x (t ), где x (t ) - концентрация прореагировавшего вещества A. В этих обозначениях кинетическое уравнение для реакции 1-го порядка и его решение имеют вид:

Решение кинетического уравнения записывают и в другом виде, удобном для анализа порядка реакции:

.

Время, за которое распадается половина вещества A, называют периодом полураспада t 1/2 . Он определяется уравнением x (t 1/2) = a /2 и равен

Реакции 2-го порядка. В реакциях типа A + B D + ... скорость прямо пропорциональна произведению концентраций:

.

Начальные концентрации веществ: [A] 0 = a , [B] 0 = b ; текущие концентрации: [A] = a - x (t ), [B] = b - x (t ).

При решении этого уравнения различают два случая.

1) одинаковые начальные концентрации веществ A и B: a = b . Кинетическое уравнение имеет вид:

.

Решение этого уравнения записывают в различных формах:

Период полураспада веществ A и B одинаков и равен:

2) Начальные концентрации веществ A и B различны: a b . Кинетическое уравнение имеет вид:
.

Решение этого уравнения можно записать следующим образом:

Периоды полураспада веществ A и B различны: .

Реакции n-го порядка n A D + ... Кинетическое уравнение имеет вид:

.

Решение кинетического уравнения:

. (2.1)

Период полураспада вещества A обратно пропорционален (n -1)-й степени начальной концентрации:

. (2.2)

Пример 2-1. Период полураспада радиоактивного изотопа 14 C - 5730 лет. При археологических раскопках было найдено дерево, содержание 14 C в котором составляет 72% от нормального. Каков возраст дерева?
Решение. Радиоактивный распад - реакция 1-го порядка. Константа скорости равна:

Время жизни дерева можно найти из решения кинетического уравнения с учетом того, что [A] = 0.72 . [A] 0:

Пример 2-2. Установлено, что реакция 2-го порядка (один реагент) завершается на 75% за 92 мин при исходной концентрации реагента 0.24 М. Какое время потребуется, чтобы при тех же условиях концентрация реагента достигла 0.16 М?
Решение. Запишем два раза решение кинетического уравнения для реакции 2-го порядка с одним реагентом:

,

где, по условию, a = 0.24 M, t 1 = 92 мин, x 1 = 0.75 . 0.24 = 0.18 M, x 2 = 0.24 - 0.16 = 0.08 M. Поделим одно уравнение на другое:

Пример 2-3. Для элементарной реакции n A B обозначим период полураспада A через t 1/2 , а время распада A на 75% - через t 3/4 . Докажите, что отношение t 3/4 / t 1/2 не зависит от начальной концентрации, а определяется только порядком реакции n .Решение. Запишем два раза решение кинетического уравнения для реакции n -го порядка с одним реагентом:

и поделим одно выражение на другое. Постоянные величины k и a из обоих выражений сократятся, и мы получим:

.

Этот результат можно обобщить, доказав, что отношение времен, за которые степень превращения составит a и b , зависит только от порядка реакции:

.

ЗАДАЧИ

2-1. Пользуясь решением кинетического уравнения, докажите, что для реакций 1-го порядка время t x , за которое степень превращения исходного вещества достигает x , не зависит от начальной концентрации. (ответ)

2-2. Реакция первого порядка протекает на 30% за 7 мин. Через какое время реакция завершится на 99%? (ответ)

2-3. Период полураспада радиоактивного изотопа 137 Cs, который попал в атмосферу в результате Чернобыльской аварии, - 29.7 лет. Через какое время количество этого изотопа составит менее 1% от исходного? (ответ)

2-4. Период полураспада радиоактивного изотопа 90 Sr, который попадает в атмосферу при ядерных испытаниях, - 28.1 лет. Предположим, что организм новорожденного ребенка поглотил 1.00 мг этого изотопа. Сколько стронция останется в организме через а) 18 лет, б) 70 лет, если считать, что он не выводится из организма?(ответ)

2-5. Константа скорости для реакции первого порядка SO 2 Cl 2 = SO 2 + Cl 2 равна 2.2 . 10 -5 с -1 при 320 о С. Какой процент SO 2 Cl 2 разложится при выдерживании его в течение 2 ч при этой температуре?(ответ)

2-6. Константа скорости реакции 1-го порядка

2N 2 O 5(г) 4NO 2(г) + O 2(г)

при 25 о С равна 3.38 . 10 -5 с -1 . Чему равен период полураспада N 2 O 5 ? Чему будет равно давление в системе через а) 10 с, б) 10 мин, если начальное давление было равно 500 мм рт. ст. (ответ)

2-7. Реакцию первого порядка проводят с различными количествами исходного вещества. Пересекутся ли в одной точке на оси абсцисс касательные к начальным участкам кинетических кривых? Ответ поясните.(ответ)

2-8. Реакция первого порядка A 2B протекает в газовой фазе. Начальное давление равно p 0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление увеличится в 1.5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени? (ответ)

2-9. Реакция второго порядка 2A B протекает в газовой фазе. Начальное давление равно p 0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление уменьшится в 1.5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени? (ответ)

2-10. Вещество A смешали с веществами B и C в равных концентрациях 1 моль/л. Через 1000 с осталось 50% вещества А. Сколько вещества А останется через 2000 с, если реакция имеет: а) нулевой, б) первый, в) второй, в) третий общий порядок?(ответ)

2-11. Какая из реакций - первого, второго или третьего порядка - закончится быстрее, если начальные концентрации веществ равны 1 моль/л и все константы скорости, выраженные через моль/л и с, равны 1? (ответ)

2-12. Реакция

CH 3 CH 2 NO 2 + OH - H 2 O + CH 3 CHNO 2 -

имеет второй порядок и константу скорости k = 39.1 л/(моль. мин) при 0 о С. Был приготовлен раствор, содержащий 0.004 М нитроэтана и 0.005 М NaOH. Через какое время прореагирует 90% нитроэтана?

2-13. Константа скорости рекомбинации ионов H + и ФГ - (фенилглиоксинат) в молекулу НФГ при 298 К равна k = 10 11.59 л/(моль. с). Рассчитайте время, в течение которого реакция прошла на 99.999%, если исходные концентрации обоих ионов равны 0.001 моль/л. (ответ)

2-14. Скорость окисления бутанола-1 хлорноватистой кислотой не зависит от концентрации спирта и пропорциональна 2 . За какое время реакция окисления при 298 К пройдет на 90%, если исходный раствор содержал 0.1 моль/л HClO и 1 моль/л спирта? Константа скорости реакции равна k = 24 л/(моль. мин). (ответ)

2-15. При определенной температуре 0.01 М раствор этилацетата омыляется 0.002 М раствором NaOH на 10% за 23 мин. Через сколько минут он будет омылен до такой же степени 0.005 М раствором KOH? Считайте, что данная реакция имеет второй порядок, а щелочи диссоциированы полностью.(ответ)

2-16. Реакция второго порядка A + B P проводится в растворе с начальными концентрациями [A] 0 = 0.050 моль/л и [B] 0 = 0.080 моль/л. Через 1 ч концентрация вещества А уменьшилась до 0.020 моль/л. Рассчитайте константу скорости и периоды полураспада обоих веществ.

Системы. Но данная величина не отражает настоящую возможность протекания реакции, ее скорость и механизм.

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм. Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные .

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

υ = ± dn / dt · V

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

υ = ± dC / dt ,

Единица измерения скорости реакции моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой , которая имеет вид:

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом: Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением :

υ = k·[A] a ·[B] b или

υ = k·C a A ·C b B

Здесь [ A ] и [ B ] (C A и C B )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ А и В равны 1, то υ = k .

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения .
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k .

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которя называется лимитирующей .

Каждая реакция имеет свой порядок . Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок . Например, в выражении скорости химической реакции для процесса

а А + b В = продукты

υ = k ·[ A ] a ·[ B ] b

a – порядок по реагенту А

b порядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Определим факторы, влияющие на скорость химической реакции υ.

  1. Зависимость скорости реакции от концентрации реагирующих веществ

    определяется законом действующих масс: υ = k [ A ] a ·[ B ] b

Очевидно, что с увеличением концентраций реагирующих веществ, υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами. Причем, важно учитывать порядок реакции: если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если по какому-либо реагенту n = 2 , то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

    константа скорости реакции - – скорость химической реакции в условиях, когда произведение концентраций реагирующих веществ равно 1 моль/л. Общая химия: учебник / А. В. Жолнин Константа скорости реакции – коэффициент пропорциональности в дифференциальном кинетическом… … Химические термины

    константа скорости реакции - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN reaction constant …

    константа скорости реакции - reakcijos greičio konstanta statusas T sritis chemija apibrėžtis Reakcijos, kurios reaguojančiųjų medžiagų koncentracijos lygios vienetui, greitis. atitikmenys: angl. rate constant; reaction constant rus. константа скорости реакции; удельная… … Chemijos terminų aiškinamasis žodynas

    константа скорости реакции - reakcijos spartos konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Reakcijos, kurios reaguojančių medžiagų koncentracijos yra lygios vienetui, sparta. atitikmenys: angl. reaction rate constant vok. Reaktionskonstante, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Химической реакции ее основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных… … Большой Энциклопедический словарь

    константа скорости каталитической реакции - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN catalytic coefficient … Справочник технического переводчика

    Химическая реакции, её основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных… … Энциклопедический словарь

    константа скорости химической реакции - изменение количества (концентрации) вещества, вступающего в реакцию или образующегося в ходе процесса, в единицу времени при данной температуре и концентрациях всех компонентов, равных единице: d[A]/dt =… … Энциклопедический словарь по металлургии

    Хим. реакции, её основная кинетич. характеристика; коэф. пропорциональности в кинетич. ур нии, связывающем скорость реакции с концентрациями реагирующих в в и их стехиометрич. коэффициентами. Для мономолекулярных реакций К. с. имеет размерность с … Естествознание. Энциклопедический словарь

    Относительные константы скорости реакции CH 3 I + Cl - в разных растворителях при 25 °С (по Паркеру) - Растворитель Относительная константа скорости CH3OH 1 HCONH2 12,5 HCONHCH3 … Химический справочник

Рис. 40. Зависимость величины обратной концентрации реагента от времени для реакции второго порядка

Рис. 39. Зависимость логарифма концентрации реагента от времени протекания для реакции первого порядка

Рис. 38. Изменение концентрации исходного вещества от времени в реакции первого порядка

Рис. 37. Изменение концентрации исходного вещества от времени в реакции нулевого порядка

Математически данная линейная зависимость запишется следующим образом

где k - константа скорости, С 0 - начальная молярная концентрация реагента, С - концентрация в момент времени t.

Из неё можно вывести формулу для расчёта константы скорости химической реакции нулевого порядка.

Константа скорости нулевого порядка измеряется в моль/л? с (моль · л -1 · с -1).

Время полупревращения для реакции нулевого порядка пропорционально концентрации исходного вещества

Для реакций первого порядка кинетическая кривая в координатах С,t носит экспоненциальный характер и выглядит следующим образом (рис. 38) Математически данная кривая описывается следующим уравнением

С = С 0 e - kt

На практике для реакций первого порядка кинетическую кривую чаще всего строят в координатах lnC, t. В этом случае наблюдается линейная зависимость lnС от времени (рис. 39)

ln С = lnС 0 - kt

ln С

Соответственно, величину константы скорости и время полупревращения можно рассчитать по следующим формулам

k = ln или k = 2,303lg

(при переходе от десятичного логарифма к натуральному).

Константа скорости реакции первого порядка имеет размерность t -1 , т.е. 1/с и не зависит от единиц измерения концентрации. Она показывает долю, которую составляют молекулы, вступившие в реакцию за единицу времени, от общего числа молекул реагента в системе. Таким образом, в реакциях первого порядка за одинаковые промежутки времени расходуются одинаковы доли взятого количества исходного вещества.

Второй отличительной особенностью реакций первого порядка является то, что t ½ для них не зависит от начальной концентрации реагента, а определяется только константой скорости.

Вид уравнения зависимости концентрации от времени для реакций второго порядка рассмотрим только для простейшего случая, когда в элементарном акте участвуют 2 одинаковые молекулы, или молекулы разных веществ, но начальные концентрации их (С 0) равны. При этом линейная зависимость наблюдается в координатах 1/С, t (рис. 40). Математическое уравнение этой зависимости запишется следующим образом

и измеряется в л?с -1 ?моль -1 , т.е. ее численное значение зависит от того, в каких единицах измеряется концентрация вещества.


Период полупревращения реакций второго порядка обратно пропорционален начальной концентрации реагента

Это связано с тем, что скорость реакций второго порядка в сильной мере зависит от числа столкновений между молекулами реагирующих веществ в единицу времени, которое, в свою очередь, пропорционально числу молекул в единице объема, т.е. концентрации вещества. Таким образом, чем больше концентрация вещества в системе, тем чаще сталкиваются молекулы между собой и тем за меньший промежуток времени половина их успеет прореагировать.

Реакции третьего порядка, как уже было сказано ранее, встречаются крайне редко и не представляют практического интереса. Поэтому в связи с этим мы их не будем рассматривать.